ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju Unicode version

Theorem xp2dju 7192
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju  |-  ( 2o 
X.  A )  =  ( A A )

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4668 . 2  |-  ( ( { (/) }  u.  { 1o } )  X.  A
)  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  A
) )
2 df2o3 6409 . . . 4  |-  2o  =  { (/) ,  1o }
3 df-pr 3590 . . . 4  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
42, 3eqtri 2191 . . 3  |-  2o  =  ( { (/) }  u.  { 1o } )
54xpeq1i 4631 . 2  |-  ( 2o 
X.  A )  =  ( ( { (/) }  u.  { 1o }
)  X.  A )
6 df-dju 7015 . 2  |-  ( A A )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  A
) )
71, 5, 63eqtr4i 2201 1  |-  ( 2o 
X.  A )  =  ( A A )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    u. cun 3119   (/)c0 3414   {csn 3583   {cpr 3584    X. cxp 4609   1oc1o 6388   2oc2o 6389   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-pr 3590  df-opab 4051  df-suc 4356  df-xp 4617  df-1o 6395  df-2o 6396  df-dju 7015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator