ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju Unicode version

Theorem xp2dju 7358
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju  |-  ( 2o 
X.  A )  =  ( A A )

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4750 . 2  |-  ( ( { (/) }  u.  { 1o } )  X.  A
)  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  A
) )
2 df2o3 6539 . . . 4  |-  2o  =  { (/) ,  1o }
3 df-pr 3650 . . . 4  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
42, 3eqtri 2228 . . 3  |-  2o  =  ( { (/) }  u.  { 1o } )
54xpeq1i 4713 . 2  |-  ( 2o 
X.  A )  =  ( ( { (/) }  u.  { 1o }
)  X.  A )
6 df-dju 7166 . 2  |-  ( A A )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  A
) )
71, 5, 63eqtr4i 2238 1  |-  ( 2o 
X.  A )  =  ( A A )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   (/)c0 3468   {csn 3643   {cpr 3644    X. cxp 4691   1oc1o 6518   2oc2o 6519   ⊔ cdju 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-pr 3650  df-opab 4122  df-suc 4436  df-xp 4699  df-1o 6525  df-2o 6526  df-dju 7166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator