ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju Unicode version

Theorem xp2dju 7282
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju  |-  ( 2o 
X.  A )  =  ( A A )

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4720 . 2  |-  ( ( { (/) }  u.  { 1o } )  X.  A
)  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  A
) )
2 df2o3 6488 . . . 4  |-  2o  =  { (/) ,  1o }
3 df-pr 3629 . . . 4  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
42, 3eqtri 2217 . . 3  |-  2o  =  ( { (/) }  u.  { 1o } )
54xpeq1i 4683 . 2  |-  ( 2o 
X.  A )  =  ( ( { (/) }  u.  { 1o }
)  X.  A )
6 df-dju 7104 . 2  |-  ( A A )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  A
) )
71, 5, 63eqtr4i 2227 1  |-  ( 2o 
X.  A )  =  ( A A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155   (/)c0 3450   {csn 3622   {cpr 3623    X. cxp 4661   1oc1o 6467   2oc2o 6468   ⊔ cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-pr 3629  df-opab 4095  df-suc 4406  df-xp 4669  df-1o 6474  df-2o 6475  df-dju 7104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator