ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2dju Unicode version

Theorem xp2dju 7393
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2dju  |-  ( 2o 
X.  A )  =  ( A A )

Proof of Theorem xp2dju
StepHypRef Expression
1 xpundir 4775 . 2  |-  ( ( { (/) }  u.  { 1o } )  X.  A
)  =  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  A
) )
2 df2o3 6574 . . . 4  |-  2o  =  { (/) ,  1o }
3 df-pr 3673 . . . 4  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
42, 3eqtri 2250 . . 3  |-  2o  =  ( { (/) }  u.  { 1o } )
54xpeq1i 4738 . 2  |-  ( 2o 
X.  A )  =  ( ( { (/) }  u.  { 1o }
)  X.  A )
6 df-dju 7201 . 2  |-  ( A A )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  A
) )
71, 5, 63eqtr4i 2260 1  |-  ( 2o 
X.  A )  =  ( A A )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   (/)c0 3491   {csn 3666   {cpr 3667    X. cxp 4716   1oc1o 6553   2oc2o 6554   ⊔ cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-pr 3673  df-opab 4145  df-suc 4461  df-xp 4724  df-1o 6560  df-2o 6561  df-dju 7201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator