| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version | ||
| Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s |
|
| mapsncnv.b |
|
| mapsncnv.x |
|
| mapsncnv.f |
|
| Ref | Expression |
|---|---|
| mapsncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6729 |
. . . . . . . . 9
| |
| 2 | mapsncnv.x |
. . . . . . . . . 10
| |
| 3 | 2 | snid 3653 |
. . . . . . . . 9
|
| 4 | ffvelcdm 5695 |
. . . . . . . . 9
| |
| 5 | 1, 3, 4 | sylancl 413 |
. . . . . . . 8
|
| 6 | eqid 2196 |
. . . . . . . . 9
| |
| 7 | mapsncnv.b |
. . . . . . . . 9
| |
| 8 | 6, 7, 2 | mapsnconst 6753 |
. . . . . . . 8
|
| 9 | 5, 8 | jca 306 |
. . . . . . 7
|
| 10 | eleq1 2259 |
. . . . . . . 8
| |
| 11 | sneq 3633 |
. . . . . . . . . 10
| |
| 12 | 11 | xpeq2d 4687 |
. . . . . . . . 9
|
| 13 | 12 | eqeq2d 2208 |
. . . . . . . 8
|
| 14 | 10, 13 | anbi12d 473 |
. . . . . . 7
|
| 15 | 9, 14 | syl5ibrcom 157 |
. . . . . 6
|
| 16 | 15 | imp 124 |
. . . . 5
|
| 17 | fconst6g 5456 |
. . . . . . . . 9
| |
| 18 | 2 | snex 4218 |
. . . . . . . . . 10
|
| 19 | 7, 18 | elmap 6736 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | vex 2766 |
. . . . . . . . . . 11
| |
| 22 | 21 | fvconst2 5778 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mp1i 10 |
. . . . . . . . 9
|
| 24 | 23 | eqcomd 2202 |
. . . . . . . 8
|
| 25 | 20, 24 | jca 306 |
. . . . . . 7
|
| 26 | eleq1 2259 |
. . . . . . . 8
| |
| 27 | fveq1 5557 |
. . . . . . . . 9
| |
| 28 | 27 | eqeq2d 2208 |
. . . . . . . 8
|
| 29 | 26, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 25, 29 | syl5ibrcom 157 |
. . . . . 6
|
| 31 | 30 | imp 124 |
. . . . 5
|
| 32 | 16, 31 | impbii 126 |
. . . 4
|
| 33 | mapsncnv.s |
. . . . . . 7
| |
| 34 | 33 | oveq2i 5933 |
. . . . . 6
|
| 35 | 34 | eleq2i 2263 |
. . . . 5
|
| 36 | 35 | anbi1i 458 |
. . . 4
|
| 37 | 33 | xpeq1i 4683 |
. . . . . 6
|
| 38 | 37 | eqeq2i 2207 |
. . . . 5
|
| 39 | 38 | anbi2i 457 |
. . . 4
|
| 40 | 32, 36, 39 | 3bitr4i 212 |
. . 3
|
| 41 | 40 | opabbii 4100 |
. 2
|
| 42 | mapsncnv.f |
. . . . 5
| |
| 43 | df-mpt 4096 |
. . . . 5
| |
| 44 | 42, 43 | eqtri 2217 |
. . . 4
|
| 45 | 44 | cnveqi 4841 |
. . 3
|
| 46 | cnvopab 5071 |
. . 3
| |
| 47 | 45, 46 | eqtri 2217 |
. 2
|
| 48 | df-mpt 4096 |
. 2
| |
| 49 | 41, 47, 48 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 |
| This theorem is referenced by: mapsnf1o2 6755 mapsnf1o3 6756 |
| Copyright terms: Public domain | W3C validator |