ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsncnv Unicode version

Theorem mapsncnv 6661
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsncnv.f  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
Assertion
Ref Expression
mapsncnv  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Distinct variable groups:    x, B, y   
x, S, y    y, X
Allowed substitution hints:    F( x, y)    X( x)

Proof of Theorem mapsncnv
StepHypRef Expression
1 elmapi 6636 . . . . . . . . 9  |-  ( x  e.  ( B  ^m  { X } )  ->  x : { X } --> B )
2 mapsncnv.x . . . . . . . . . 10  |-  X  e. 
_V
32snid 3607 . . . . . . . . 9  |-  X  e. 
{ X }
4 ffvelrn 5618 . . . . . . . . 9  |-  ( ( x : { X }
--> B  /\  X  e. 
{ X } )  ->  ( x `  X )  e.  B
)
51, 3, 4sylancl 410 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  -> 
( x `  X
)  e.  B )
6 eqid 2165 . . . . . . . . 9  |-  { X }  =  { X }
7 mapsncnv.b . . . . . . . . 9  |-  B  e. 
_V
86, 7, 2mapsnconst 6660 . . . . . . . 8  |-  ( x  e.  ( B  ^m  { X } )  ->  x  =  ( { X }  X.  { ( x `  X ) } ) )
95, 8jca 304 . . . . . . 7  |-  ( x  e.  ( B  ^m  { X } )  -> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) )
10 eleq1 2229 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
y  e.  B  <->  ( x `  X )  e.  B
) )
11 sneq 3587 . . . . . . . . . 10  |-  ( y  =  ( x `  X )  ->  { y }  =  { ( x `  X ) } )
1211xpeq2d 4628 . . . . . . . . 9  |-  ( y  =  ( x `  X )  ->  ( { X }  X.  {
y } )  =  ( { X }  X.  { ( x `  X ) } ) )
1312eqeq2d 2177 . . . . . . . 8  |-  ( y  =  ( x `  X )  ->  (
x  =  ( { X }  X.  {
y } )  <->  x  =  ( { X }  X.  { ( x `  X ) } ) ) )
1410, 13anbi12d 465 . . . . . . 7  |-  ( y  =  ( x `  X )  ->  (
( y  e.  B  /\  x  =  ( { X }  X.  {
y } ) )  <-> 
( ( x `  X )  e.  B  /\  x  =  ( { X }  X.  {
( x `  X
) } ) ) ) )
159, 14syl5ibrcom 156 . . . . . 6  |-  ( x  e.  ( B  ^m  { X } )  -> 
( y  =  ( x `  X )  ->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) ) )
1615imp 123 . . . . 5  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  ->  (
y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
17 fconst6g 5386 . . . . . . . . 9  |-  ( y  e.  B  ->  ( { X }  X.  {
y } ) : { X } --> B )
182snex 4164 . . . . . . . . . 10  |-  { X }  e.  _V
197, 18elmap 6643 . . . . . . . . 9  |-  ( ( { X }  X.  { y } )  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } ) : { X } --> B )
2017, 19sylibr 133 . . . . . . . 8  |-  ( y  e.  B  ->  ( { X }  X.  {
y } )  e.  ( B  ^m  { X } ) )
21 vex 2729 . . . . . . . . . . 11  |-  y  e. 
_V
2221fvconst2 5701 . . . . . . . . . 10  |-  ( X  e.  { X }  ->  ( ( { X }  X.  { y } ) `  X )  =  y )
233, 22mp1i 10 . . . . . . . . 9  |-  ( y  e.  B  ->  (
( { X }  X.  { y } ) `
 X )  =  y )
2423eqcomd 2171 . . . . . . . 8  |-  ( y  e.  B  ->  y  =  ( ( { X }  X.  {
y } ) `  X ) )
2520, 24jca 304 . . . . . . 7  |-  ( y  e.  B  ->  (
( { X }  X.  { y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) )
26 eleq1 2229 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x  e.  ( B  ^m  { X } )  <->  ( { X }  X.  { y } )  e.  ( B  ^m  { X } ) ) )
27 fveq1 5485 . . . . . . . . 9  |-  ( x  =  ( { X }  X.  { y } )  ->  ( x `  X )  =  ( ( { X }  X.  { y } ) `
 X ) )
2827eqeq2d 2177 . . . . . . . 8  |-  ( x  =  ( { X }  X.  { y } )  ->  ( y  =  ( x `  X )  <->  y  =  ( ( { X }  X.  { y } ) `  X ) ) )
2926, 28anbi12d 465 . . . . . . 7  |-  ( x  =  ( { X }  X.  { y } )  ->  ( (
x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( ( { X }  X.  {
y } )  e.  ( B  ^m  { X } )  /\  y  =  ( ( { X }  X.  {
y } ) `  X ) ) ) )
3025, 29syl5ibrcom 156 . . . . . 6  |-  ( y  e.  B  ->  (
x  =  ( { X }  X.  {
y } )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) ) )
3130imp 123 . . . . 5  |-  ( ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) )  -> 
( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3216, 31impbii 125 . . . 4  |-  ( ( x  e.  ( B  ^m  { X }
)  /\  y  =  ( x `  X
) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
33 mapsncnv.s . . . . . . 7  |-  S  =  { X }
3433oveq2i 5853 . . . . . 6  |-  ( B  ^m  S )  =  ( B  ^m  { X } )
3534eleq2i 2233 . . . . 5  |-  ( x  e.  ( B  ^m  S )  <->  x  e.  ( B  ^m  { X } ) )
3635anbi1i 454 . . . 4  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( x  e.  ( B  ^m  { X } )  /\  y  =  ( x `  X ) ) )
3733xpeq1i 4624 . . . . . 6  |-  ( S  X.  { y } )  =  ( { X }  X.  {
y } )
3837eqeq2i 2176 . . . . 5  |-  ( x  =  ( S  X.  { y } )  <-> 
x  =  ( { X }  X.  {
y } ) )
3938anbi2i 453 . . . 4  |-  ( ( y  e.  B  /\  x  =  ( S  X.  { y } ) )  <->  ( y  e.  B  /\  x  =  ( { X }  X.  { y } ) ) )
4032, 36, 393bitr4i 211 . . 3  |-  ( ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) )  <->  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) )
4140opabbii 4049 . 2  |-  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
42 mapsncnv.f . . . . 5  |-  F  =  ( x  e.  ( B  ^m  S ) 
|->  ( x `  X
) )
43 df-mpt 4045 . . . . 5  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  { <. x ,  y >.  |  ( x  e.  ( B  ^m  S )  /\  y  =  ( x `  X ) ) }
4442, 43eqtri 2186 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4544cnveqi 4779 . . 3  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
46 cnvopab 5005 . . 3  |-  `' { <. x ,  y >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
4745, 46eqtri 2186 . 2  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  ( B  ^m  S
)  /\  y  =  ( x `  X
) ) }
48 df-mpt 4045 . 2  |-  ( y  e.  B  |->  ( S  X.  { y } ) )  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  ( S  X.  { y } ) ) }
4941, 47, 483eqtr4i 2196 1  |-  `' F  =  ( y  e.  B  |->  ( S  X.  { y } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   {copab 4042    |-> cmpt 4043    X. cxp 4602   `'ccnv 4603   -->wf 5184   ` cfv 5188  (class class class)co 5842    ^m cmap 6614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616
This theorem is referenced by:  mapsnf1o2  6662  mapsnf1o3  6663
  Copyright terms: Public domain W3C validator