| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version | ||
| Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s |
|
| mapsncnv.b |
|
| mapsncnv.x |
|
| mapsncnv.f |
|
| Ref | Expression |
|---|---|
| mapsncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6780 |
. . . . . . . . 9
| |
| 2 | mapsncnv.x |
. . . . . . . . . 10
| |
| 3 | 2 | snid 3674 |
. . . . . . . . 9
|
| 4 | ffvelcdm 5736 |
. . . . . . . . 9
| |
| 5 | 1, 3, 4 | sylancl 413 |
. . . . . . . 8
|
| 6 | eqid 2207 |
. . . . . . . . 9
| |
| 7 | mapsncnv.b |
. . . . . . . . 9
| |
| 8 | 6, 7, 2 | mapsnconst 6804 |
. . . . . . . 8
|
| 9 | 5, 8 | jca 306 |
. . . . . . 7
|
| 10 | eleq1 2270 |
. . . . . . . 8
| |
| 11 | sneq 3654 |
. . . . . . . . . 10
| |
| 12 | 11 | xpeq2d 4717 |
. . . . . . . . 9
|
| 13 | 12 | eqeq2d 2219 |
. . . . . . . 8
|
| 14 | 10, 13 | anbi12d 473 |
. . . . . . 7
|
| 15 | 9, 14 | syl5ibrcom 157 |
. . . . . 6
|
| 16 | 15 | imp 124 |
. . . . 5
|
| 17 | fconst6g 5496 |
. . . . . . . . 9
| |
| 18 | 2 | snex 4245 |
. . . . . . . . . 10
|
| 19 | 7, 18 | elmap 6787 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | vex 2779 |
. . . . . . . . . . 11
| |
| 22 | 21 | fvconst2 5823 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mp1i 10 |
. . . . . . . . 9
|
| 24 | 23 | eqcomd 2213 |
. . . . . . . 8
|
| 25 | 20, 24 | jca 306 |
. . . . . . 7
|
| 26 | eleq1 2270 |
. . . . . . . 8
| |
| 27 | fveq1 5598 |
. . . . . . . . 9
| |
| 28 | 27 | eqeq2d 2219 |
. . . . . . . 8
|
| 29 | 26, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 25, 29 | syl5ibrcom 157 |
. . . . . 6
|
| 31 | 30 | imp 124 |
. . . . 5
|
| 32 | 16, 31 | impbii 126 |
. . . 4
|
| 33 | mapsncnv.s |
. . . . . . 7
| |
| 34 | 33 | oveq2i 5978 |
. . . . . 6
|
| 35 | 34 | eleq2i 2274 |
. . . . 5
|
| 36 | 35 | anbi1i 458 |
. . . 4
|
| 37 | 33 | xpeq1i 4713 |
. . . . . 6
|
| 38 | 37 | eqeq2i 2218 |
. . . . 5
|
| 39 | 38 | anbi2i 457 |
. . . 4
|
| 40 | 32, 36, 39 | 3bitr4i 212 |
. . 3
|
| 41 | 40 | opabbii 4127 |
. 2
|
| 42 | mapsncnv.f |
. . . . 5
| |
| 43 | df-mpt 4123 |
. . . . 5
| |
| 44 | 42, 43 | eqtri 2228 |
. . . 4
|
| 45 | 44 | cnveqi 4871 |
. . 3
|
| 46 | cnvopab 5103 |
. . 3
| |
| 47 | 45, 46 | eqtri 2228 |
. 2
|
| 48 | df-mpt 4123 |
. 2
| |
| 49 | 41, 47, 48 | 3eqtr4i 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 |
| This theorem is referenced by: mapsnf1o2 6806 mapsnf1o3 6807 |
| Copyright terms: Public domain | W3C validator |