Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version |
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | |
mapsncnv.b | |
mapsncnv.x | |
mapsncnv.f |
Ref | Expression |
---|---|
mapsncnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6648 | . . . . . . . . 9 | |
2 | mapsncnv.x | . . . . . . . . . 10 | |
3 | 2 | snid 3614 | . . . . . . . . 9 |
4 | ffvelrn 5629 | . . . . . . . . 9 | |
5 | 1, 3, 4 | sylancl 411 | . . . . . . . 8 |
6 | eqid 2170 | . . . . . . . . 9 | |
7 | mapsncnv.b | . . . . . . . . 9 | |
8 | 6, 7, 2 | mapsnconst 6672 | . . . . . . . 8 |
9 | 5, 8 | jca 304 | . . . . . . 7 |
10 | eleq1 2233 | . . . . . . . 8 | |
11 | sneq 3594 | . . . . . . . . . 10 | |
12 | 11 | xpeq2d 4635 | . . . . . . . . 9 |
13 | 12 | eqeq2d 2182 | . . . . . . . 8 |
14 | 10, 13 | anbi12d 470 | . . . . . . 7 |
15 | 9, 14 | syl5ibrcom 156 | . . . . . 6 |
16 | 15 | imp 123 | . . . . 5 |
17 | fconst6g 5396 | . . . . . . . . 9 | |
18 | 2 | snex 4171 | . . . . . . . . . 10 |
19 | 7, 18 | elmap 6655 | . . . . . . . . 9 |
20 | 17, 19 | sylibr 133 | . . . . . . . 8 |
21 | vex 2733 | . . . . . . . . . . 11 | |
22 | 21 | fvconst2 5712 | . . . . . . . . . 10 |
23 | 3, 22 | mp1i 10 | . . . . . . . . 9 |
24 | 23 | eqcomd 2176 | . . . . . . . 8 |
25 | 20, 24 | jca 304 | . . . . . . 7 |
26 | eleq1 2233 | . . . . . . . 8 | |
27 | fveq1 5495 | . . . . . . . . 9 | |
28 | 27 | eqeq2d 2182 | . . . . . . . 8 |
29 | 26, 28 | anbi12d 470 | . . . . . . 7 |
30 | 25, 29 | syl5ibrcom 156 | . . . . . 6 |
31 | 30 | imp 123 | . . . . 5 |
32 | 16, 31 | impbii 125 | . . . 4 |
33 | mapsncnv.s | . . . . . . 7 | |
34 | 33 | oveq2i 5864 | . . . . . 6 |
35 | 34 | eleq2i 2237 | . . . . 5 |
36 | 35 | anbi1i 455 | . . . 4 |
37 | 33 | xpeq1i 4631 | . . . . . 6 |
38 | 37 | eqeq2i 2181 | . . . . 5 |
39 | 38 | anbi2i 454 | . . . 4 |
40 | 32, 36, 39 | 3bitr4i 211 | . . 3 |
41 | 40 | opabbii 4056 | . 2 |
42 | mapsncnv.f | . . . . 5 | |
43 | df-mpt 4052 | . . . . 5 | |
44 | 42, 43 | eqtri 2191 | . . . 4 |
45 | 44 | cnveqi 4786 | . . 3 |
46 | cnvopab 5012 | . . 3 | |
47 | 45, 46 | eqtri 2191 | . 2 |
48 | df-mpt 4052 | . 2 | |
49 | 41, 47, 48 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wcel 2141 cvv 2730 csn 3583 copab 4049 cmpt 4050 cxp 4609 ccnv 4610 wf 5194 cfv 5198 (class class class)co 5853 cmap 6626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 |
This theorem is referenced by: mapsnf1o2 6674 mapsnf1o3 6675 |
Copyright terms: Public domain | W3C validator |