| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version | ||
| Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s |
|
| mapsncnv.b |
|
| mapsncnv.x |
|
| mapsncnv.f |
|
| Ref | Expression |
|---|---|
| mapsncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6759 |
. . . . . . . . 9
| |
| 2 | mapsncnv.x |
. . . . . . . . . 10
| |
| 3 | 2 | snid 3664 |
. . . . . . . . 9
|
| 4 | ffvelcdm 5715 |
. . . . . . . . 9
| |
| 5 | 1, 3, 4 | sylancl 413 |
. . . . . . . 8
|
| 6 | eqid 2205 |
. . . . . . . . 9
| |
| 7 | mapsncnv.b |
. . . . . . . . 9
| |
| 8 | 6, 7, 2 | mapsnconst 6783 |
. . . . . . . 8
|
| 9 | 5, 8 | jca 306 |
. . . . . . 7
|
| 10 | eleq1 2268 |
. . . . . . . 8
| |
| 11 | sneq 3644 |
. . . . . . . . . 10
| |
| 12 | 11 | xpeq2d 4700 |
. . . . . . . . 9
|
| 13 | 12 | eqeq2d 2217 |
. . . . . . . 8
|
| 14 | 10, 13 | anbi12d 473 |
. . . . . . 7
|
| 15 | 9, 14 | syl5ibrcom 157 |
. . . . . 6
|
| 16 | 15 | imp 124 |
. . . . 5
|
| 17 | fconst6g 5476 |
. . . . . . . . 9
| |
| 18 | 2 | snex 4230 |
. . . . . . . . . 10
|
| 19 | 7, 18 | elmap 6766 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | vex 2775 |
. . . . . . . . . . 11
| |
| 22 | 21 | fvconst2 5802 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mp1i 10 |
. . . . . . . . 9
|
| 24 | 23 | eqcomd 2211 |
. . . . . . . 8
|
| 25 | 20, 24 | jca 306 |
. . . . . . 7
|
| 26 | eleq1 2268 |
. . . . . . . 8
| |
| 27 | fveq1 5577 |
. . . . . . . . 9
| |
| 28 | 27 | eqeq2d 2217 |
. . . . . . . 8
|
| 29 | 26, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 25, 29 | syl5ibrcom 157 |
. . . . . 6
|
| 31 | 30 | imp 124 |
. . . . 5
|
| 32 | 16, 31 | impbii 126 |
. . . 4
|
| 33 | mapsncnv.s |
. . . . . . 7
| |
| 34 | 33 | oveq2i 5957 |
. . . . . 6
|
| 35 | 34 | eleq2i 2272 |
. . . . 5
|
| 36 | 35 | anbi1i 458 |
. . . 4
|
| 37 | 33 | xpeq1i 4696 |
. . . . . 6
|
| 38 | 37 | eqeq2i 2216 |
. . . . 5
|
| 39 | 38 | anbi2i 457 |
. . . 4
|
| 40 | 32, 36, 39 | 3bitr4i 212 |
. . 3
|
| 41 | 40 | opabbii 4112 |
. 2
|
| 42 | mapsncnv.f |
. . . . 5
| |
| 43 | df-mpt 4108 |
. . . . 5
| |
| 44 | 42, 43 | eqtri 2226 |
. . . 4
|
| 45 | 44 | cnveqi 4854 |
. . 3
|
| 46 | cnvopab 5085 |
. . 3
| |
| 47 | 45, 46 | eqtri 2226 |
. 2
|
| 48 | df-mpt 4108 |
. 2
| |
| 49 | 41, 47, 48 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-map 6739 |
| This theorem is referenced by: mapsnf1o2 6785 mapsnf1o3 6786 |
| Copyright terms: Public domain | W3C validator |