Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version |
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | |
mapsncnv.b | |
mapsncnv.x | |
mapsncnv.f |
Ref | Expression |
---|---|
mapsncnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6636 | . . . . . . . . 9 | |
2 | mapsncnv.x | . . . . . . . . . 10 | |
3 | 2 | snid 3607 | . . . . . . . . 9 |
4 | ffvelrn 5618 | . . . . . . . . 9 | |
5 | 1, 3, 4 | sylancl 410 | . . . . . . . 8 |
6 | eqid 2165 | . . . . . . . . 9 | |
7 | mapsncnv.b | . . . . . . . . 9 | |
8 | 6, 7, 2 | mapsnconst 6660 | . . . . . . . 8 |
9 | 5, 8 | jca 304 | . . . . . . 7 |
10 | eleq1 2229 | . . . . . . . 8 | |
11 | sneq 3587 | . . . . . . . . . 10 | |
12 | 11 | xpeq2d 4628 | . . . . . . . . 9 |
13 | 12 | eqeq2d 2177 | . . . . . . . 8 |
14 | 10, 13 | anbi12d 465 | . . . . . . 7 |
15 | 9, 14 | syl5ibrcom 156 | . . . . . 6 |
16 | 15 | imp 123 | . . . . 5 |
17 | fconst6g 5386 | . . . . . . . . 9 | |
18 | 2 | snex 4164 | . . . . . . . . . 10 |
19 | 7, 18 | elmap 6643 | . . . . . . . . 9 |
20 | 17, 19 | sylibr 133 | . . . . . . . 8 |
21 | vex 2729 | . . . . . . . . . . 11 | |
22 | 21 | fvconst2 5701 | . . . . . . . . . 10 |
23 | 3, 22 | mp1i 10 | . . . . . . . . 9 |
24 | 23 | eqcomd 2171 | . . . . . . . 8 |
25 | 20, 24 | jca 304 | . . . . . . 7 |
26 | eleq1 2229 | . . . . . . . 8 | |
27 | fveq1 5485 | . . . . . . . . 9 | |
28 | 27 | eqeq2d 2177 | . . . . . . . 8 |
29 | 26, 28 | anbi12d 465 | . . . . . . 7 |
30 | 25, 29 | syl5ibrcom 156 | . . . . . 6 |
31 | 30 | imp 123 | . . . . 5 |
32 | 16, 31 | impbii 125 | . . . 4 |
33 | mapsncnv.s | . . . . . . 7 | |
34 | 33 | oveq2i 5853 | . . . . . 6 |
35 | 34 | eleq2i 2233 | . . . . 5 |
36 | 35 | anbi1i 454 | . . . 4 |
37 | 33 | xpeq1i 4624 | . . . . . 6 |
38 | 37 | eqeq2i 2176 | . . . . 5 |
39 | 38 | anbi2i 453 | . . . 4 |
40 | 32, 36, 39 | 3bitr4i 211 | . . 3 |
41 | 40 | opabbii 4049 | . 2 |
42 | mapsncnv.f | . . . . 5 | |
43 | df-mpt 4045 | . . . . 5 | |
44 | 42, 43 | eqtri 2186 | . . . 4 |
45 | 44 | cnveqi 4779 | . . 3 |
46 | cnvopab 5005 | . . 3 | |
47 | 45, 46 | eqtri 2186 | . 2 |
48 | df-mpt 4045 | . 2 | |
49 | 41, 47, 48 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 cvv 2726 csn 3576 copab 4042 cmpt 4043 cxp 4602 ccnv 4603 wf 5184 cfv 5188 (class class class)co 5842 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: mapsnf1o2 6662 mapsnf1o3 6663 |
Copyright terms: Public domain | W3C validator |