| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsncnv | Unicode version | ||
| Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s |
|
| mapsncnv.b |
|
| mapsncnv.x |
|
| mapsncnv.f |
|
| Ref | Expression |
|---|---|
| mapsncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6817 |
. . . . . . . . 9
| |
| 2 | mapsncnv.x |
. . . . . . . . . 10
| |
| 3 | 2 | snid 3697 |
. . . . . . . . 9
|
| 4 | ffvelcdm 5768 |
. . . . . . . . 9
| |
| 5 | 1, 3, 4 | sylancl 413 |
. . . . . . . 8
|
| 6 | eqid 2229 |
. . . . . . . . 9
| |
| 7 | mapsncnv.b |
. . . . . . . . 9
| |
| 8 | 6, 7, 2 | mapsnconst 6841 |
. . . . . . . 8
|
| 9 | 5, 8 | jca 306 |
. . . . . . 7
|
| 10 | eleq1 2292 |
. . . . . . . 8
| |
| 11 | sneq 3677 |
. . . . . . . . . 10
| |
| 12 | 11 | xpeq2d 4743 |
. . . . . . . . 9
|
| 13 | 12 | eqeq2d 2241 |
. . . . . . . 8
|
| 14 | 10, 13 | anbi12d 473 |
. . . . . . 7
|
| 15 | 9, 14 | syl5ibrcom 157 |
. . . . . 6
|
| 16 | 15 | imp 124 |
. . . . 5
|
| 17 | fconst6g 5524 |
. . . . . . . . 9
| |
| 18 | 2 | snex 4269 |
. . . . . . . . . 10
|
| 19 | 7, 18 | elmap 6824 |
. . . . . . . . 9
|
| 20 | 17, 19 | sylibr 134 |
. . . . . . . 8
|
| 21 | vex 2802 |
. . . . . . . . . . 11
| |
| 22 | 21 | fvconst2 5855 |
. . . . . . . . . 10
|
| 23 | 3, 22 | mp1i 10 |
. . . . . . . . 9
|
| 24 | 23 | eqcomd 2235 |
. . . . . . . 8
|
| 25 | 20, 24 | jca 306 |
. . . . . . 7
|
| 26 | eleq1 2292 |
. . . . . . . 8
| |
| 27 | fveq1 5626 |
. . . . . . . . 9
| |
| 28 | 27 | eqeq2d 2241 |
. . . . . . . 8
|
| 29 | 26, 28 | anbi12d 473 |
. . . . . . 7
|
| 30 | 25, 29 | syl5ibrcom 157 |
. . . . . 6
|
| 31 | 30 | imp 124 |
. . . . 5
|
| 32 | 16, 31 | impbii 126 |
. . . 4
|
| 33 | mapsncnv.s |
. . . . . . 7
| |
| 34 | 33 | oveq2i 6012 |
. . . . . 6
|
| 35 | 34 | eleq2i 2296 |
. . . . 5
|
| 36 | 35 | anbi1i 458 |
. . . 4
|
| 37 | 33 | xpeq1i 4739 |
. . . . . 6
|
| 38 | 37 | eqeq2i 2240 |
. . . . 5
|
| 39 | 38 | anbi2i 457 |
. . . 4
|
| 40 | 32, 36, 39 | 3bitr4i 212 |
. . 3
|
| 41 | 40 | opabbii 4151 |
. 2
|
| 42 | mapsncnv.f |
. . . . 5
| |
| 43 | df-mpt 4147 |
. . . . 5
| |
| 44 | 42, 43 | eqtri 2250 |
. . . 4
|
| 45 | 44 | cnveqi 4897 |
. . 3
|
| 46 | cnvopab 5130 |
. . 3
| |
| 47 | 45, 46 | eqtri 2250 |
. 2
|
| 48 | df-mpt 4147 |
. 2
| |
| 49 | 41, 47, 48 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 |
| This theorem is referenced by: mapsnf1o2 6843 mapsnf1o3 6844 |
| Copyright terms: Public domain | W3C validator |