ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpun Unicode version

Theorem xpun 4736
Description: The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpun  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )

Proof of Theorem xpun
StepHypRef Expression
1 xpundi 4731 . 2  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  u.  B )  X.  C )  u.  (
( A  u.  B
)  X.  D ) )
2 xpundir 4732 . . 3  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
3 xpundir 4732 . . 3  |-  ( ( A  u.  B )  X.  D )  =  ( ( A  X.  D )  u.  ( B  X.  D ) )
42, 3uneq12i 3325 . 2  |-  ( ( ( A  u.  B
)  X.  C )  u.  ( ( A  u.  B )  X.  D ) )  =  ( ( ( A  X.  C )  u.  ( B  X.  C
) )  u.  (
( A  X.  D
)  u.  ( B  X.  D ) ) )
5 un4 3333 . 2  |-  ( ( ( A  X.  C
)  u.  ( B  X.  C ) )  u.  ( ( A  X.  D )  u.  ( B  X.  D
) ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )
61, 4, 53eqtri 2230 1  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3164    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-opab 4106  df-xp 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator