ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpun Unicode version

Theorem xpun 4780
Description: The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpun  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )

Proof of Theorem xpun
StepHypRef Expression
1 xpundi 4775 . 2  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  u.  B )  X.  C )  u.  (
( A  u.  B
)  X.  D ) )
2 xpundir 4776 . . 3  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
3 xpundir 4776 . . 3  |-  ( ( A  u.  B )  X.  D )  =  ( ( A  X.  D )  u.  ( B  X.  D ) )
42, 3uneq12i 3356 . 2  |-  ( ( ( A  u.  B
)  X.  C )  u.  ( ( A  u.  B )  X.  D ) )  =  ( ( ( A  X.  C )  u.  ( B  X.  C
) )  u.  (
( A  X.  D
)  u.  ( B  X.  D ) ) )
5 un4 3364 . 2  |-  ( ( ( A  X.  C
)  u.  ( B  X.  C ) )  u.  ( ( A  X.  D )  u.  ( B  X.  D
) ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )
61, 4, 53eqtri 2254 1  |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D
) )  u.  (
( B  X.  C
)  u.  ( B  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-opab 4146  df-xp 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator