| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpun | GIF version | ||
| Description: The cross product of two unions. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| xpun | ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundi 4772 | . 2 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) | |
| 2 | xpundir 4773 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) | |
| 3 | xpundir 4773 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)) | |
| 4 | 2, 3 | uneq12i 3356 | . 2 ⊢ (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) |
| 5 | un4 3364 | . 2 ⊢ (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) | |
| 6 | 1, 4, 5 | 3eqtri 2254 | 1 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-opab 4145 df-xp 4722 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |