ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvv Unicode version

Theorem elvv 4755
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elvv  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Distinct variable group:    x, y, A

Proof of Theorem elvv
StepHypRef Expression
1 elxp 4710 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
2 vex 2779 . . . . 5  |-  x  e. 
_V
3 vex 2779 . . . . 5  |-  y  e. 
_V
42, 3pm3.2i 272 . . . 4  |-  ( x  e.  _V  /\  y  e.  _V )
54biantru 302 . . 3  |-  ( A  =  <. x ,  y
>. 
<->  ( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
652exbii 1630 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>. 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
71, 6bitr4i 187 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   <.cop 3646    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699
This theorem is referenced by:  elvvv  4756  elvvuni  4757  ssrel  4781  elrel  4795  relop  4846  elreldm  4923  dmsnm  5167  1stval2  6264  2ndval2  6265  dfopab2  6298  dfoprab3s  6299  dftpos4  6372  tpostpos  6373  fundmen  6922  fundm2domnop0  11027
  Copyright terms: Public domain W3C validator