ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvv Unicode version

Theorem elvv 4601
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elvv  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Distinct variable group:    x, y, A

Proof of Theorem elvv
StepHypRef Expression
1 elxp 4556 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
2 vex 2689 . . . . 5  |-  x  e. 
_V
3 vex 2689 . . . . 5  |-  y  e. 
_V
42, 3pm3.2i 270 . . . 4  |-  ( x  e.  _V  /\  y  e.  _V )
54biantru 300 . . 3  |-  ( A  =  <. x ,  y
>. 
<->  ( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
652exbii 1585 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>. 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
71, 6bitr4i 186 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686   <.cop 3530    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545
This theorem is referenced by:  elvvv  4602  elvvuni  4603  ssrel  4627  elrel  4641  relop  4689  elreldm  4765  dmsnm  5004  1stval2  6053  2ndval2  6054  dfopab2  6087  dfoprab3s  6088  dftpos4  6160  tpostpos  6161  fundmen  6700
  Copyright terms: Public domain W3C validator