ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvv Unicode version

Theorem elvv 4737
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elvv  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Distinct variable group:    x, y, A

Proof of Theorem elvv
StepHypRef Expression
1 elxp 4692 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
2 vex 2775 . . . . 5  |-  x  e. 
_V
3 vex 2775 . . . . 5  |-  y  e. 
_V
42, 3pm3.2i 272 . . . 4  |-  ( x  e.  _V  /\  y  e.  _V )
54biantru 302 . . 3  |-  ( A  =  <. x ,  y
>. 
<->  ( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
652exbii 1629 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>. 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  _V  /\  y  e.  _V )
) )
71, 6bitr4i 187 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   <.cop 3636    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681
This theorem is referenced by:  elvvv  4738  elvvuni  4739  ssrel  4763  elrel  4777  relop  4828  elreldm  4904  dmsnm  5148  1stval2  6241  2ndval2  6242  dfopab2  6275  dfoprab3s  6276  dftpos4  6349  tpostpos  6350  fundmen  6898  fundm2domnop0  10990
  Copyright terms: Public domain W3C validator