Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elvv | Unicode version |
Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
elvv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4600 | . 2 | |
2 | vex 2715 | . . . . 5 | |
3 | vex 2715 | . . . . 5 | |
4 | 2, 3 | pm3.2i 270 | . . . 4 |
5 | 4 | biantru 300 | . . 3 |
6 | 5 | 2exbii 1586 | . 2 |
7 | 1, 6 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cvv 2712 cop 3563 cxp 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-opab 4026 df-xp 4589 |
This theorem is referenced by: elvvv 4646 elvvuni 4647 ssrel 4671 elrel 4685 relop 4733 elreldm 4809 dmsnm 5048 1stval2 6097 2ndval2 6098 dfopab2 6131 dfoprab3s 6132 dftpos4 6204 tpostpos 6205 fundmen 6744 |
Copyright terms: Public domain | W3C validator |