| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12i | Unicode version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 |
|
| uneq12i.2 |
|
| Ref | Expression |
|---|---|
| uneq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 |
. 2
| |
| 2 | uneq12i.2 |
. 2
| |
| 3 | uneq12 3353 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: indir 3453 difundir 3457 symdif1 3469 unrab 3475 rabun2 3483 dfif6 3604 dfif3 3616 unopab 4163 xpundi 4775 xpundir 4776 xpun 4780 dmun 4930 resundi 5018 resundir 5019 cnvun 5134 rnun 5137 imaundi 5141 imaundir 5142 dmtpop 5204 coundi 5230 coundir 5231 unidmrn 5261 dfdm2 5263 mptun 5455 fpr 5821 fvsnun2 5837 sbthlemi5 7128 djuunr 7233 djuun 7234 casedm 7253 djudm 7272 djuassen 7399 fz0to3un2pr 10319 fz0to4untppr 10320 fzo0to42pr 10426 xnn0nnen 10659 |
| Copyright terms: Public domain | W3C validator |