| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12i | Unicode version | ||
| Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 |
|
| uneq12i.2 |
|
| Ref | Expression |
|---|---|
| uneq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 |
. 2
| |
| 2 | uneq12i.2 |
. 2
| |
| 3 | uneq12 3322 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: indir 3422 difundir 3426 symdif1 3438 unrab 3444 rabun2 3452 dfif6 3573 dfif3 3584 unopab 4124 xpundi 4732 xpundir 4733 xpun 4737 dmun 4886 resundi 4973 resundir 4974 cnvun 5089 rnun 5092 imaundi 5096 imaundir 5097 dmtpop 5159 coundi 5185 coundir 5186 unidmrn 5216 dfdm2 5218 mptun 5409 fpr 5768 fvsnun2 5784 sbthlemi5 7065 djuunr 7170 djuun 7171 casedm 7190 djudm 7209 djuassen 7331 fz0to3un2pr 10247 fz0to4untppr 10248 fzo0to42pr 10351 xnn0nnen 10584 |
| Copyright terms: Public domain | W3C validator |