Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12i | Unicode version |
Description: Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | |
uneq12i.2 |
Ref | Expression |
---|---|
uneq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 | |
2 | uneq12i.2 | . 2 | |
3 | uneq12 3271 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: indir 3371 difundir 3375 symdif1 3387 unrab 3393 rabun2 3401 dfif6 3522 dfif3 3533 unopab 4061 xpundi 4660 xpundir 4661 xpun 4665 dmun 4811 resundi 4897 resundir 4898 cnvun 5009 rnun 5012 imaundi 5016 imaundir 5017 dmtpop 5079 coundi 5105 coundir 5106 unidmrn 5136 dfdm2 5138 mptun 5319 fpr 5667 fvsnun2 5683 sbthlemi5 6926 djuunr 7031 djuun 7032 casedm 7051 djudm 7070 djuassen 7173 fz0to3un2pr 10058 fz0to4untppr 10059 fzo0to42pr 10155 |
Copyright terms: Public domain | W3C validator |