ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundir Unicode version

Theorem xpundir 4750
Description: Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )

Proof of Theorem xpundir
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4699 . 2  |-  ( ( A  u.  B )  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
2 df-xp 4699 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
3 df-xp 4699 . . . 4  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
42, 3uneq12i 3333 . . 3  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
5 elun 3322 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C ) )
7 andir 821 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C )  <->  ( (
x  e.  A  /\  y  e.  C )  \/  ( x  e.  B  /\  y  e.  C
) ) )
86, 7bitri 184 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) )
98opabbii 4127 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
10 unopab 4139 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
119, 10eqtr4i 2231 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
124, 11eqtr4i 2231 . 2  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
131, 12eqtr4i 2231 1  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178    u. cun 3172   {copab 4120    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-opab 4122  df-xp 4699
This theorem is referenced by:  xpun  4754  resundi  4991  xpfi  7055  xp2dju  7358  hashxp  11008
  Copyright terms: Public domain W3C validator