ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundir Unicode version

Theorem xpundir 4661
Description: Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )

Proof of Theorem xpundir
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4610 . 2  |-  ( ( A  u.  B )  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
2 df-xp 4610 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
3 df-xp 4610 . . . 4  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
42, 3uneq12i 3274 . . 3  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
5 elun 3263 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 454 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C ) )
7 andir 809 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  e.  C )  <->  ( (
x  e.  A  /\  y  e.  C )  \/  ( x  e.  B  /\  y  e.  C
) ) )
86, 7bitri 183 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  e.  C )  <->  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) )
98opabbii 4049 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
10 unopab 4061 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  C
)  \/  ( x  e.  B  /\  y  e.  C ) ) }
119, 10eqtr4i 2189 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  e.  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
124, 11eqtr4i 2189 . 2  |-  ( ( A  X.  C )  u.  ( B  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  ( A  u.  B
)  /\  y  e.  C ) }
131, 12eqtr4i 2189 1  |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114   {copab 4042    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-opab 4044  df-xp 4610
This theorem is referenced by:  xpun  4665  resundi  4897  xpfi  6895  xp2dju  7171  hashxp  10739
  Copyright terms: Public domain W3C validator