ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exeu GIF version

Theorem 2exeu 2118
Description: Double existential uniqueness implies double unique existential quantification. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2exeu ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)

Proof of Theorem 2exeu
StepHypRef Expression
1 excom 1664 . . . . 5 (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
2 hbe1 1495 . . . . . . . 8 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
32hbmo 2065 . . . . . . 7 (∃*𝑦𝑥𝜑 → ∀𝑥∃*𝑦𝑥𝜑)
4319.41h 1685 . . . . . 6 (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑))
5 19.8a 1590 . . . . . . . . 9 (𝜑 → ∃𝑥𝜑)
65moimi 2091 . . . . . . . 8 (∃*𝑦𝑥𝜑 → ∃*𝑦𝜑)
76anim2i 342 . . . . . . 7 ((∃𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
87eximi 1600 . . . . . 6 (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
94, 8sylbir 135 . . . . 5 ((∃𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
101, 9sylanb 284 . . . 4 ((∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑) → ∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
11 simpl 109 . . . . . 6 ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) → ∃𝑦𝜑)
1211moimi 2091 . . . . 5 (∃*𝑥𝑦𝜑 → ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
1312adantl 277 . . . 4 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
1410, 13anim12i 338 . . 3 (((∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑) ∧ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑)) → (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑) ∧ ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑)))
1514ancoms 268 . 2 (((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) ∧ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)) → (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑) ∧ ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑)))
16 eu5 2073 . . 3 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
17 eu5 2073 . . 3 (∃!𝑦𝑥𝜑 ↔ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑))
1816, 17anbi12i 460 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) ∧ (∃𝑦𝑥𝜑 ∧ ∃*𝑦𝑥𝜑)))
19 eu5 2073 . . 3 (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
20 eu5 2073 . . . . 5 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
2120exbii 1605 . . . 4 (∃𝑥∃!𝑦𝜑 ↔ ∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
2220mobii 2063 . . . 4 (∃*𝑥∃!𝑦𝜑 ↔ ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑))
2321, 22anbi12i 460 . . 3 ((∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑) ↔ (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑) ∧ ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑)))
2419, 23bitri 184 . 2 (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑) ∧ ∃*𝑥(∃𝑦𝜑 ∧ ∃*𝑦𝜑)))
2515, 18, 243imtr4i 201 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1492  ∃!weu 2026  ∃*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator