| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrass | GIF version | ||
| Description: An associative law for division. (divassap 8763 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrass.d | ⊢ / = (/r‘𝑅) |
| dvrass.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrass | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
| 2 | simpr1 1006 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr2 1007 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
| 4 | simpr3 1008 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
| 5 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | eqid 2205 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 7 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 5, 6, 7 | ringinvcl 13887 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 9 | 4, 8 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 10 | dvrass.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | 7, 10 | ringass 13778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
| 12 | 1, 2, 3, 9, 11 | syl13anc 1252 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
| 13 | 7 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝐵 = (Base‘𝑅)) |
| 14 | 10 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → · = (.r‘𝑅)) |
| 15 | 5 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑈 = (Unit‘𝑅)) |
| 16 | 6 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (invr‘𝑅) = (invr‘𝑅)) |
| 17 | dvrass.d | . . . 4 ⊢ / = (/r‘𝑅) | |
| 18 | 17 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → / = (/r‘𝑅)) |
| 19 | 7, 10 | ringcl 13775 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 20 | 19 | 3adant3r3 1217 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝐵) |
| 21 | 13, 14, 15, 16, 18, 1, 20, 4 | dvrvald 13896 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = ((𝑋 · 𝑌) · ((invr‘𝑅)‘𝑍))) |
| 22 | 13, 14, 15, 16, 18, 1, 3, 4 | dvrvald 13896 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌 · ((invr‘𝑅)‘𝑍))) |
| 23 | 22 | oveq2d 5960 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 · (𝑌 / 𝑍)) = (𝑋 · (𝑌 · ((invr‘𝑅)‘𝑍)))) |
| 24 | 12, 21, 23 | 3eqtr4d 2248 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 .rcmulr 12910 Ringcrg 13758 Unitcui 13849 invrcinvr 13882 /rcdvr 13893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-tpos 6331 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-cmn 13622 df-abl 13623 df-mgp 13683 df-ur 13722 df-srg 13726 df-ring 13760 df-oppr 13830 df-dvdsr 13851 df-unit 13852 df-invr 13883 df-dvr 13894 |
| This theorem is referenced by: dvrcan3 13903 |
| Copyright terms: Public domain | W3C validator |