ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrp GIF version

Theorem imasgrp 13181
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u (𝜑𝑈 = (𝐹s 𝑅))
imasgrp.v (𝜑𝑉 = (Base‘𝑅))
imasgrp.p (𝜑+ = (+g𝑅))
imasgrp.f (𝜑𝐹:𝑉onto𝐵)
imasgrp.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasgrp.r (𝜑𝑅 ∈ Grp)
imasgrp.z 0 = (0g𝑅)
Assertion
Ref Expression
imasgrp (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝜑   𝑅,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasgrp.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasgrp.p . 2 (𝜑+ = (+g𝑅))
4 imasgrp.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasgrp.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasgrp.r . 2 (𝜑𝑅 ∈ Grp)
763ad2ant1 1020 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Grp)
8 simp2 1000 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1020 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2272 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1001 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2272 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2193 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2193 . . . . 5 (+g𝑅) = (+g𝑅)
1513, 14grpcl 13080 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
167, 10, 12, 15syl3anc 1249 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
1733ad2ant1 1020 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → + = (+g𝑅))
1817oveqd 5935 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
1916, 18, 93eltr4d 2277 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
206adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Grp)
21103adant3r3 1216 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
22123adant3r3 1216 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 simpr3 1007 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
242adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2523, 24eleqtrd 2272 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2613, 14grpass 13081 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
2720, 21, 22, 25, 26syl13anc 1251 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
283adantr 276 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → + = (+g𝑅))
29183adant3r3 1216 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) = (𝑥(+g𝑅)𝑦))
30 eqidd 2194 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 = 𝑧)
3128, 29, 30oveq123d 5939 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝑅)𝑦)(+g𝑅)𝑧))
32 eqidd 2194 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 = 𝑥)
3328oveqd 5935 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) = (𝑦(+g𝑅)𝑧))
3428, 32, 33oveq123d 5939 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝑅)(𝑦(+g𝑅)𝑧)))
3527, 31, 343eqtr4d 2236 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3635fveq2d 5558 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
37 imasgrp.z . . . . 5 0 = (0g𝑅)
3813, 37grpidcl 13101 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
396, 38syl 14 . . 3 (𝜑0 ∈ (Base‘𝑅))
4039, 2eleqtrrd 2273 . 2 (𝜑0𝑉)
413adantr 276 . . . . 5 ((𝜑𝑥𝑉) → + = (+g𝑅))
4241oveqd 5935 . . . 4 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = ( 0 (+g𝑅)𝑥))
432eleq2d 2263 . . . . . 6 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
4443biimpa 296 . . . . 5 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
4513, 14, 37grplid 13103 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
466, 44, 45syl2an2r 595 . . . 4 ((𝜑𝑥𝑉) → ( 0 (+g𝑅)𝑥) = 𝑥)
4742, 46eqtrd 2226 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
4847fveq2d 5558 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
49 eqid 2193 . . . . 5 (invg𝑅) = (invg𝑅)
5013, 49grpinvcl 13120 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
516, 44, 50syl2an2r 595 . . 3 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
522adantr 276 . . 3 ((𝜑𝑥𝑉) → 𝑉 = (Base‘𝑅))
5351, 52eleqtrrd 2273 . 2 ((𝜑𝑥𝑉) → ((invg𝑅)‘𝑥) ∈ 𝑉)
5441oveqd 5935 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = (((invg𝑅)‘𝑥)(+g𝑅)𝑥))
5513, 14, 37, 49grplinv 13122 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
566, 44, 55syl2an2r 595 . . . 4 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥)(+g𝑅)𝑥) = 0 )
5754, 56eqtrd 2226 . . 3 ((𝜑𝑥𝑉) → (((invg𝑅)‘𝑥) + 𝑥) = 0 )
5857fveq2d 5558 . 2 ((𝜑𝑥𝑉) → (𝐹‘(((invg𝑅)‘𝑥) + 𝑥)) = (𝐹0 ))
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 13180 1 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  ontowfo 5252  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  s cimas 12882  Grpcgrp 13072  invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-0g 12869  df-iimas 12885  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by:  imasgrpf1  13182  imasabl  13406  imasring  13560
  Copyright terms: Public domain W3C validator