| Step | Hyp | Ref
 | Expression | 
| 1 |   | opprbas.1 | 
. . 3
⊢ 𝑂 =
(oppr‘𝑅) | 
| 2 |   | eqid 2196 | 
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 | 1, 2 | opprbasg 13631 | 
. 2
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑂)) | 
| 4 |   | eqid 2196 | 
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 5 | 1, 4 | oppraddg 13632 | 
. 2
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘𝑂)) | 
| 6 |   | eqidd 2197 | 
. 2
⊢ (𝑅 ∈ Ring →
(.r‘𝑂) =
(.r‘𝑂)) | 
| 7 |   | ringgrp 13557 | 
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 8 |   | eqidd 2197 | 
. . . 4
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑅)) | 
| 9 | 5 | oveqdr 5950 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) | 
| 10 | 8, 3, 9 | grppropd 13149 | 
. . 3
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)) | 
| 11 | 7, 10 | mpbid 147 | 
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Grp) | 
| 12 |   | eqid 2196 | 
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 13 |   | eqid 2196 | 
. . . 4
⊢
(.r‘𝑂) = (.r‘𝑂) | 
| 14 | 2, 12, 1, 13 | opprmulg 13627 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) | 
| 15 | 2, 12 | ringcl 13569 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 16 | 15 | 3com23 1211 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 17 | 14, 16 | eqeltrd 2273 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) ∈ (Base‘𝑅)) | 
| 18 |   | simpl 109 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) | 
| 19 |   | simpr3 1007 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | 
| 20 |   | simpr2 1006 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | 
| 21 |   | simpr1 1005 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | 
| 22 | 2, 12 | ringass 13572 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) | 
| 23 | 18, 19, 20, 21, 22 | syl13anc 1251 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) | 
| 24 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) | 
| 25 | 24 | 3adant3r1 1214 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) | 
| 26 | 25 | oveq2d 5938 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦))) | 
| 27 | 2, 12 | ringcl 13569 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 28 | 18, 19, 20, 27 | syl3anc 1249 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 29 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) | 
| 30 | 18, 21, 28, 29 | syl3anc 1249 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) | 
| 31 | 26, 30 | eqtrd 2229 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) | 
| 32 | 14 | oveq1d 5937 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧)) | 
| 33 | 32 | 3adant3r3 1216 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧)) | 
| 34 | 16 | 3adant3r3 1216 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 35 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) | 
| 36 | 18, 34, 19, 35 | syl3anc 1249 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) | 
| 37 | 33, 36 | eqtrd 2229 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) | 
| 38 | 23, 31, 37 | 3eqtr4rd 2240 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧))) | 
| 39 | 2, 4, 12 | ringdir 13575 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) | 
| 40 | 18, 20, 19, 21, 39 | syl13anc 1251 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) | 
| 41 | 2, 4 | ringacl 13586 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) | 
| 42 | 41 | 3adant3r1 1214 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) | 
| 43 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) | 
| 44 | 18, 21, 42, 43 | syl3anc 1249 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) | 
| 45 | 14 | 3adant3r3 1216 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) | 
| 46 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) | 
| 47 | 46 | 3adant3r2 1215 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) | 
| 48 | 45, 47 | oveq12d 5940 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧)) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) | 
| 49 | 40, 44, 48 | 3eqtr4d 2239 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧))) | 
| 50 | 2, 4, 12 | ringdi 13574 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 51 | 18, 19, 21, 20, 50 | syl13anc 1251 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 52 | 2, 4 | ringacl 13586 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 53 | 52 | 3adant3r3 1216 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) | 
| 54 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) | 
| 55 | 18, 53, 19, 54 | syl3anc 1249 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) | 
| 56 | 47, 25 | oveq12d 5940 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 57 | 51, 55, 56 | 3eqtr4d 2239 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧))) | 
| 58 |   | eqid 2196 | 
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 59 | 2, 58 | ringidcl 13576 | 
. 2
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 60 |   | simpl 109 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | 
| 61 | 60, 59 | syl 14 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 62 |   | simpr 110 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) | 
| 63 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅))) | 
| 64 | 60, 61, 62, 63 | syl3anc 1249 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅))) | 
| 65 | 2, 12, 58 | ringridm 13580 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) | 
| 66 | 64, 65 | eqtrd 2229 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥) | 
| 67 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥)) | 
| 68 | 60, 62, 61, 67 | syl3anc 1249 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥)) | 
| 69 | 2, 12, 58 | ringlidm 13579 | 
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) | 
| 70 | 68, 69 | eqtrd 2229 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥) | 
| 71 | 3, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70 | isringd 13597 | 
1
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |