ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprring GIF version

Theorem opprring 13635
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprring (𝑅 ∈ Ring → 𝑂 ∈ Ring)

Proof of Theorem opprring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
2 eqid 2196 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13631 . 2 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2196 . . 3 (+g𝑅) = (+g𝑅)
51, 4oppraddg 13632 . 2 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑂))
6 eqidd 2197 . 2 (𝑅 ∈ Ring → (.r𝑂) = (.r𝑂))
7 ringgrp 13557 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqidd 2197 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
95oveqdr 5950 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
108, 3, 9grppropd 13149 . . 3 (𝑅 ∈ Ring → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
117, 10mpbid 147 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Grp)
12 eqid 2196 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2196 . . . 4 (.r𝑂) = (.r𝑂)
142, 12, 1, 13opprmulg 13627 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
152, 12ringcl 13569 . . . 4 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
16153com23 1211 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
1714, 16eqeltrd 2273 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) ∈ (Base‘𝑅))
18 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
19 simpr3 1007 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
20 simpr2 1006 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
21 simpr1 1005 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
222, 12ringass 13572 . . . 4 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2318, 19, 20, 21, 22syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
242, 12, 1, 13opprmulg 13627 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
25243adant3r1 1214 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
2625oveq2d 5938 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)))
272, 12ringcl 13569 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
2818, 19, 20, 27syl3anc 1249 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
292, 12, 1, 13opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3018, 21, 28, 29syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3126, 30eqtrd 2229 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3214oveq1d 5937 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧))
33323adant3r3 1216 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧))
34163adant3r3 1216 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
352, 12, 1, 13opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3618, 34, 19, 35syl3anc 1249 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3733, 36eqtrd 2229 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3823, 31, 373eqtr4rd 2240 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)))
392, 4, 12ringdir 13575 . . . 4 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4018, 20, 19, 21, 39syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
412, 4ringacl 13586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
42413adant3r1 1214 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
432, 12, 1, 13opprmulg 13627 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
4418, 21, 42, 43syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
45143adant3r3 1216 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
462, 12, 1, 13opprmulg 13627 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
47463adant3r2 1215 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
4845, 47oveq12d 5940 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4940, 44, 483eqtr4d 2239 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)))
502, 4, 12ringdi 13574 . . . 4 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5118, 19, 21, 20, 50syl13anc 1251 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
522, 4ringacl 13586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
53523adant3r3 1216 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
542, 12, 1, 13opprmulg 13627 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5518, 53, 19, 54syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5647, 25oveq12d 5940 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5751, 55, 563eqtr4d 2239 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)))
58 eqid 2196 . . 3 (1r𝑅) = (1r𝑅)
592, 58ringidcl 13576 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
60 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
6160, 59syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
62 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
632, 12, 1, 13opprmulg 13627 . . . 4 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
6460, 61, 62, 63syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
652, 12, 58ringridm 13580 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
6664, 65eqtrd 2229 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = 𝑥)
672, 12, 1, 13opprmulg 13627 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = ((1r𝑅)(.r𝑅)𝑥))
6860, 62, 61, 67syl3anc 1249 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = ((1r𝑅)(.r𝑅)𝑥))
692, 12, 58ringlidm 13579 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7068, 69eqtrd 2229 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = 𝑥)
713, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70isringd 13597 1 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Grpcgrp 13132  1rcur 13515  Ringcrg 13552  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-mgp 13477  df-ur 13516  df-ring 13554  df-oppr 13624
This theorem is referenced by:  opprringbg  13636  mulgass3  13641  1unit  13663  opprunitd  13666  crngunit  13667  unitmulcl  13669  unitgrp  13672  unitnegcl  13686  unitpropdg  13704  subrguss  13792  subrgunit  13795  isridl  14060  ridl0  14066  ridl1  14067
  Copyright terms: Public domain W3C validator