Step | Hyp | Ref
| Expression |
1 | | opprbas.1 |
. . 3
⊢ 𝑂 =
(oppr‘𝑅) |
2 | | eqid 2177 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | 1, 2 | opprbasg 13252 |
. 2
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑂)) |
4 | | eqid 2177 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
5 | 1, 4 | oppraddg 13253 |
. 2
⊢ (𝑅 ∈ Ring →
(+g‘𝑅) =
(+g‘𝑂)) |
6 | | eqidd 2178 |
. 2
⊢ (𝑅 ∈ Ring →
(.r‘𝑂) =
(.r‘𝑂)) |
7 | | ringgrp 13189 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
8 | | eqidd 2178 |
. . . 4
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑅)) |
9 | 5 | oveqdr 5905 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
10 | 8, 3, 9 | grppropd 12898 |
. . 3
⊢ (𝑅 ∈ Ring → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)) |
11 | 7, 10 | mpbid 147 |
. 2
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Grp) |
12 | | eqid 2177 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
13 | | eqid 2177 |
. . . 4
⊢
(.r‘𝑂) = (.r‘𝑂) |
14 | 2, 12, 1, 13 | opprmulg 13248 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
15 | 2, 12 | ringcl 13201 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
16 | 15 | 3com23 1209 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
17 | 14, 16 | eqeltrd 2254 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) ∈ (Base‘𝑅)) |
18 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
19 | | simpr3 1005 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) |
20 | | simpr2 1004 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
21 | | simpr1 1003 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
22 | 2, 12 | ringass 13204 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
23 | 18, 19, 20, 21, 22 | syl13anc 1240 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
24 | 2, 12, 1, 13 | opprmulg 13248 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
25 | 24 | 3adant3r1 1212 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
26 | 25 | oveq2d 5893 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦))) |
27 | 2, 12 | ringcl 13201 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
28 | 18, 19, 20, 27 | syl3anc 1238 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
29 | 2, 12, 1, 13 | opprmulg 13248 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
30 | 18, 21, 28, 29 | syl3anc 1238 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
31 | 26, 30 | eqtrd 2210 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
32 | 14 | oveq1d 5892 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧)) |
33 | 32 | 3adant3r3 1214 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧)) |
34 | 16 | 3adant3r3 1214 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
35 | 2, 12, 1, 13 | opprmulg 13248 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
36 | 18, 34, 19, 35 | syl3anc 1238 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
37 | 33, 36 | eqtrd 2210 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
38 | 23, 31, 37 | 3eqtr4rd 2221 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧))) |
39 | 2, 4, 12 | ringdir 13207 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
40 | 18, 20, 19, 21, 39 | syl13anc 1240 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
41 | 2, 4 | ringacl 13218 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) |
42 | 41 | 3adant3r1 1212 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) |
43 | 2, 12, 1, 13 | opprmulg 13248 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) |
44 | 18, 21, 42, 43 | syl3anc 1238 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) |
45 | 14 | 3adant3r3 1214 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
46 | 2, 12, 1, 13 | opprmulg 13248 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) |
47 | 46 | 3adant3r2 1213 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) |
48 | 45, 47 | oveq12d 5895 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧)) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
49 | 40, 44, 48 | 3eqtr4d 2220 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧))) |
50 | 2, 4, 12 | ringdi 13206 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
51 | 18, 19, 21, 20, 50 | syl13anc 1240 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
52 | 2, 4 | ringacl 13218 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
53 | 52 | 3adant3r3 1214 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
54 | 2, 12, 1, 13 | opprmulg 13248 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) |
55 | 18, 53, 19, 54 | syl3anc 1238 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) |
56 | 47, 25 | oveq12d 5895 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
57 | 51, 55, 56 | 3eqtr4d 2220 |
. 2
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧))) |
58 | | eqid 2177 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
59 | 2, 58 | ringidcl 13208 |
. 2
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
60 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
61 | 60, 59 | syl 14 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
(1r‘𝑅)
∈ (Base‘𝑅)) |
62 | | simpr 110 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
63 | 2, 12, 1, 13 | opprmulg 13248 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅))) |
64 | 60, 61, 62, 63 | syl3anc 1238 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)(1r‘𝑅))) |
65 | 2, 12, 58 | ringridm 13212 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) |
66 | 64, 65 | eqtrd 2210 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑂)𝑥) = 𝑥) |
67 | 2, 12, 1, 13 | opprmulg 13248 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
68 | 60, 62, 61, 67 | syl3anc 1238 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = ((1r‘𝑅)(.r‘𝑅)𝑥)) |
69 | 2, 12, 58 | ringlidm 13211 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) →
((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) |
70 | 68, 69 | eqtrd 2210 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(1r‘𝑅)) = 𝑥) |
71 | 3, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70 | isringd 13225 |
1
⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |