ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprring GIF version

Theorem opprring 14037
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprring (𝑅 ∈ Ring → 𝑂 ∈ Ring)

Proof of Theorem opprring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
2 eqid 2229 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 14033 . 2 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2229 . . 3 (+g𝑅) = (+g𝑅)
51, 4oppraddg 14034 . 2 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑂))
6 eqidd 2230 . 2 (𝑅 ∈ Ring → (.r𝑂) = (.r𝑂))
7 ringgrp 13959 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqidd 2230 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
95oveqdr 6028 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
108, 3, 9grppropd 13545 . . 3 (𝑅 ∈ Ring → (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp))
117, 10mpbid 147 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Grp)
12 eqid 2229 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2229 . . . 4 (.r𝑂) = (.r𝑂)
142, 12, 1, 13opprmulg 14029 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
152, 12ringcl 13971 . . . 4 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
16153com23 1233 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
1714, 16eqeltrd 2306 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) ∈ (Base‘𝑅))
18 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
19 simpr3 1029 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
20 simpr2 1028 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
21 simpr1 1027 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
222, 12ringass 13974 . . . 4 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2318, 19, 20, 21, 22syl13anc 1273 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
242, 12, 1, 13opprmulg 14029 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
25243adant3r1 1236 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
2625oveq2d 6016 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)))
272, 12ringcl 13971 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
2818, 19, 20, 27syl3anc 1271 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
292, 12, 1, 13opprmulg 14029 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3018, 21, 28, 29syl3anc 1271 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3126, 30eqtrd 2262 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3214oveq1d 6015 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧))
33323adant3r3 1238 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧))
34163adant3r3 1238 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
352, 12, 1, 13opprmulg 14029 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3618, 34, 19, 35syl3anc 1271 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3733, 36eqtrd 2262 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3823, 31, 373eqtr4rd 2273 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)))
392, 4, 12ringdir 13977 . . . 4 ((𝑅 ∈ Ring ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4018, 20, 19, 21, 39syl13anc 1273 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
412, 4ringacl 13988 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
42413adant3r1 1236 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
432, 12, 1, 13opprmulg 14029 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
4418, 21, 42, 43syl3anc 1271 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
45143adant3r3 1238 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
462, 12, 1, 13opprmulg 14029 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
47463adant3r2 1237 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
4845, 47oveq12d 6018 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4940, 44, 483eqtr4d 2272 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)))
502, 4, 12ringdi 13976 . . . 4 ((𝑅 ∈ Ring ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5118, 19, 21, 20, 50syl13anc 1273 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
522, 4ringacl 13988 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
53523adant3r3 1238 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
542, 12, 1, 13opprmulg 14029 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5518, 53, 19, 54syl3anc 1271 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5647, 25oveq12d 6018 . . 3 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5751, 55, 563eqtr4d 2272 . 2 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)))
58 eqid 2229 . . 3 (1r𝑅) = (1r𝑅)
592, 58ringidcl 13978 . 2 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
60 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
6160, 59syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
62 simpr 110 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
632, 12, 1, 13opprmulg 14029 . . . 4 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
6460, 61, 62, 63syl3anc 1271 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = (𝑥(.r𝑅)(1r𝑅)))
652, 12, 58ringridm 13982 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(1r𝑅)) = 𝑥)
6664, 65eqtrd 2262 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑂)𝑥) = 𝑥)
672, 12, 1, 13opprmulg 14029 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = ((1r𝑅)(.r𝑅)𝑥))
6860, 62, 61, 67syl3anc 1271 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = ((1r𝑅)(.r𝑅)𝑥))
692, 12, 58ringlidm 13981 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
7068, 69eqtrd 2262 . 2 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(1r𝑅)) = 𝑥)
713, 5, 6, 11, 17, 38, 49, 57, 59, 66, 70isringd 13999 1 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  Grpcgrp 13528  1rcur 13917  Ringcrg 13954  opprcoppr 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-mgp 13879  df-ur 13918  df-ring 13956  df-oppr 14026
This theorem is referenced by:  opprringbg  14038  mulgass3  14043  1unit  14065  opprunitd  14068  crngunit  14069  unitmulcl  14071  unitgrp  14074  unitnegcl  14088  unitpropdg  14106  subrguss  14194  subrgunit  14197  isridl  14462  ridl0  14468  ridl1  14469
  Copyright terms: Public domain W3C validator