ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetrtri GIF version

Theorem xmetrtri 14016
Description: One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xmetrtri ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐢) +𝑒 -𝑒(𝐡𝐷𝐢)) ≀ (𝐴𝐷𝐡))

Proof of Theorem xmetrtri
StepHypRef Expression
1 3ancomb 986 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋))
2 xmettri 14012 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐢) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐡𝐷𝐢)))
31, 2sylan2b 287 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐢) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐡𝐷𝐢)))
4 xmetcl 13992 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (𝐴𝐷𝐢) ∈ ℝ*)
543adant3r2 1213 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐢) ∈ ℝ*)
6 xmetcl 13992 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (𝐡𝐷𝐢) ∈ ℝ*)
763adant3r1 1212 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐡𝐷𝐢) ∈ ℝ*)
8 xmetcl 13992 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
983adant3r3 1214 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
10 xmetge0 14005 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐢))
11103adant3r2 1213 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 0 ≀ (𝐴𝐷𝐢))
12 xmetge0 14005 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ 0 ≀ (𝐡𝐷𝐢))
13123adant3r1 1212 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 0 ≀ (𝐡𝐷𝐢))
14 ge0nemnf 9827 . . . 4 (((𝐡𝐷𝐢) ∈ ℝ* ∧ 0 ≀ (𝐡𝐷𝐢)) β†’ (𝐡𝐷𝐢) β‰  -∞)
157, 13, 14syl2anc 411 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (𝐡𝐷𝐢) β‰  -∞)
16 xmetge0 14005 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ 0 ≀ (𝐴𝐷𝐡))
17163adant3r3 1214 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ 0 ≀ (𝐴𝐷𝐡))
18 xlesubadd 9886 . . 3 ((((𝐴𝐷𝐢) ∈ ℝ* ∧ (𝐡𝐷𝐢) ∈ ℝ* ∧ (𝐴𝐷𝐡) ∈ ℝ*) ∧ (0 ≀ (𝐴𝐷𝐢) ∧ (𝐡𝐷𝐢) β‰  -∞ ∧ 0 ≀ (𝐴𝐷𝐡))) β†’ (((𝐴𝐷𝐢) +𝑒 -𝑒(𝐡𝐷𝐢)) ≀ (𝐴𝐷𝐡) ↔ (𝐴𝐷𝐢) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐡𝐷𝐢))))
195, 7, 9, 11, 15, 17, 18syl33anc 1253 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (((𝐴𝐷𝐢) +𝑒 -𝑒(𝐡𝐷𝐢)) ≀ (𝐴𝐷𝐡) ↔ (𝐴𝐷𝐢) ≀ ((𝐴𝐷𝐡) +𝑒 (𝐡𝐷𝐢))))
203, 19mpbird 167 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ ((𝐴𝐷𝐢) +𝑒 -𝑒(𝐡𝐷𝐢)) ≀ (𝐴𝐷𝐡))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   ∈ wcel 2148   β‰  wne 2347   class class class wbr 4005  β€˜cfv 5218  (class class class)co 5878  0cc0 7814  -∞cmnf 7993  β„*cxr 7994   ≀ cle 7996  -𝑒cxne 9772   +𝑒 cxad 9773  βˆžMetcxmet 13580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-map 6653  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-2 8981  df-xneg 9775  df-xadd 9776  df-xmet 13588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator