| Step | Hyp | Ref
| Expression |
| 1 | | opprbas.1 |
. . 3
⊢ 𝑂 =
(oppr‘𝑅) |
| 2 | | eqid 2196 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | 1, 2 | opprbasg 13631 |
. 2
⊢ (𝑅 ∈ Rng →
(Base‘𝑅) =
(Base‘𝑂)) |
| 4 | | eqid 2196 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 5 | 1, 4 | oppraddg 13632 |
. 2
⊢ (𝑅 ∈ Rng →
(+g‘𝑅) =
(+g‘𝑂)) |
| 6 | | eqidd 2197 |
. 2
⊢ (𝑅 ∈ Rng →
(.r‘𝑂) =
(.r‘𝑂)) |
| 7 | | rngabl 13491 |
. . 3
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 8 | | eqidd 2197 |
. . . 4
⊢ (𝑅 ∈ Rng →
(Base‘𝑅) =
(Base‘𝑅)) |
| 9 | 5 | oveqdr 5950 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑂)𝑦)) |
| 10 | 8, 3, 9 | ablpropd 13426 |
. . 3
⊢ (𝑅 ∈ Rng → (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel)) |
| 11 | 7, 10 | mpbid 147 |
. 2
⊢ (𝑅 ∈ Rng → 𝑂 ∈ Abel) |
| 12 | | eqid 2196 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 13 | | eqid 2196 |
. . . 4
⊢
(.r‘𝑂) = (.r‘𝑂) |
| 14 | 2, 12, 1, 13 | opprmulg 13627 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
| 15 | 2, 12 | rngcl 13500 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 16 | 15 | 3com23 1211 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 17 | 14, 16 | eqeltrd 2273 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑦) ∈ (Base‘𝑅)) |
| 18 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Rng) |
| 19 | | simpr3 1007 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) |
| 20 | | simpr2 1006 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
| 21 | | simpr1 1005 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
| 22 | 2, 12 | rngass 13495 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 23 | 18, 19, 20, 21, 22 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 24 | 2, 12, 1, 13 | opprmulg 13627 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 25 | 24 | 3adant3r1 1214 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 26 | 25 | oveq2d 5938 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦))) |
| 27 | 2, 12 | rngcl 13500 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 28 | 18, 19, 20, 27 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 29 | 2, 12, 1, 13 | opprmulg 13627 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
| 30 | 18, 21, 28, 29 | syl3anc 1249 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑧(.r‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
| 31 | 26, 30 | eqtrd 2229 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑦)(.r‘𝑅)𝑥)) |
| 32 | 14 | 3adant3r3 1216 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑥)) |
| 33 | 32 | oveq1d 5937 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧)) |
| 34 | 18, 20, 21, 15 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 35 | 2, 12, 1, 13 | opprmulg 13627 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑦(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 36 | 18, 34, 19, 35 | syl3anc 1249 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r‘𝑅)𝑥)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 37 | 33, 36 | eqtrd 2229 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑦(.r‘𝑅)𝑥))) |
| 38 | 23, 31, 37 | 3eqtr4rd 2240 |
. 2
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(.r‘𝑂)𝑧) = (𝑥(.r‘𝑂)(𝑦(.r‘𝑂)𝑧))) |
| 39 | 2, 4, 12 | rngdir 13497 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
| 40 | 18, 20, 19, 21, 39 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
| 41 | 2, 4 | rngacl 13498 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) |
| 42 | 41 | 3adant3r1 1214 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) |
| 43 | 2, 12, 1, 13 | opprmulg 13627 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g‘𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) |
| 44 | 18, 21, 42, 43 | syl3anc 1249 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧)(.r‘𝑅)𝑥)) |
| 45 | 2, 12, 1, 13 | opprmulg 13627 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) |
| 46 | 18, 21, 19, 45 | syl3anc 1249 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑥)) |
| 47 | 32, 46 | oveq12d 5940 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧)) = ((𝑦(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑥))) |
| 48 | 40, 44, 47 | 3eqtr4d 2239 |
. 2
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑂)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑂)𝑦)(+g‘𝑅)(𝑥(.r‘𝑂)𝑧))) |
| 49 | 2, 4, 12 | rngdi 13496 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
| 50 | 18, 19, 21, 20, 49 | syl13anc 1251 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
| 51 | 2, 4 | rngacl 13498 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 52 | 51 | 3adant3r3 1216 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅)) |
| 53 | 2, 12, 1, 13 | opprmulg 13627 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝑥(+g‘𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) |
| 54 | 18, 52, 19, 53 | syl3anc 1249 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) |
| 55 | 46, 25 | oveq12d 5940 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) |
| 56 | 50, 54, 55 | 3eqtr4d 2239 |
. 2
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑂)𝑧) = ((𝑥(.r‘𝑂)𝑧)(+g‘𝑅)(𝑦(.r‘𝑂)𝑧))) |
| 57 | 3, 5, 6, 11, 17, 38, 48, 56 | isrngd 13509 |
1
⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |