ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrng GIF version

Theorem opprrng 13576
Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrng (𝑅 ∈ Rng → 𝑂 ∈ Rng)

Proof of Theorem opprrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
2 eqid 2193 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13574 . 2 (𝑅 ∈ Rng → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2193 . . 3 (+g𝑅) = (+g𝑅)
51, 4oppraddg 13575 . 2 (𝑅 ∈ Rng → (+g𝑅) = (+g𝑂))
6 eqidd 2194 . 2 (𝑅 ∈ Rng → (.r𝑂) = (.r𝑂))
7 rngabl 13434 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
8 eqidd 2194 . . . 4 (𝑅 ∈ Rng → (Base‘𝑅) = (Base‘𝑅))
95oveqdr 5947 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
108, 3, 9ablpropd 13369 . . 3 (𝑅 ∈ Rng → (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel))
117, 10mpbid 147 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Abel)
12 eqid 2193 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2193 . . . 4 (.r𝑂) = (.r𝑂)
142, 12, 1, 13opprmulg 13570 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
152, 12rngcl 13443 . . . 4 ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
16153com23 1211 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
1714, 16eqeltrd 2270 . 2 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) ∈ (Base‘𝑅))
18 simpl 109 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Rng)
19 simpr3 1007 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
20 simpr2 1006 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
21 simpr1 1005 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
222, 12rngass 13438 . . . 4 ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2318, 19, 20, 21, 22syl13anc 1251 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
242, 12, 1, 13opprmulg 13570 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
25243adant3r1 1214 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
2625oveq2d 5935 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)))
272, 12rngcl 13443 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
2818, 19, 20, 27syl3anc 1249 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅))
292, 12, 1, 13opprmulg 13570 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑦) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3018, 21, 28, 29syl3anc 1249 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
3126, 30eqtrd 2226 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
32143adant3r3 1216 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥))
3332oveq1d 5934 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧))
3418, 20, 21, 15syl3anc 1249 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
352, 12, 1, 13opprmulg 13570 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3618, 34, 19, 35syl3anc 1249 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3733, 36eqtrd 2226 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
3823, 31, 373eqtr4rd 2237 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)))
392, 4, 12rngdir 13440 . . . 4 ((𝑅 ∈ Rng ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4018, 20, 19, 21, 39syl13anc 1251 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
412, 4rngacl 13441 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
42413adant3r1 1214 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅))
432, 12, 1, 13opprmulg 13570 . . . 4 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ (𝑦(+g𝑅)𝑧) ∈ (Base‘𝑅)) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
4418, 21, 42, 43syl3anc 1249 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥))
452, 12, 1, 13opprmulg 13570 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
4618, 21, 19, 45syl3anc 1249 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥))
4732, 46oveq12d 5937 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
4840, 44, 473eqtr4d 2236 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)))
492, 4, 12rngdi 13439 . . . 4 ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5018, 19, 21, 20, 49syl13anc 1251 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
512, 4rngacl 13441 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
52513adant3r3 1216 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅))
532, 12, 1, 13opprmulg 13570 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥(+g𝑅)𝑦) ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5418, 52, 19, 53syl3anc 1249 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
5546, 25oveq12d 5937 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
5650, 54, 553eqtr4d 2236 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)))
573, 5, 6, 11, 17, 38, 48, 56isrngd 13452 1 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  Abelcabl 13358  Rngcrng 13431  opprcoppr 13566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-oppr 13567
This theorem is referenced by:  opprrngbg  13577  opprsubrngg  13710  isridlrng  13981  2idlcpblrng  14022
  Copyright terms: Public domain W3C validator