ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mettri2 GIF version

Theorem mettri2 12557
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mettri2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))

Proof of Theorem mettri2
StepHypRef Expression
1 metxmet 12550 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmettri2 12556 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
31, 2sylan 281 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
4 metcl 12548 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐶𝑋𝐴𝑋) → (𝐶𝐷𝐴) ∈ ℝ)
543adant3r3 1192 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶𝐷𝐴) ∈ ℝ)
6 metcl 12548 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐶𝑋𝐵𝑋) → (𝐶𝐷𝐵) ∈ ℝ)
763adant3r2 1191 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶𝐷𝐵) ∈ ℝ)
8 rexadd 9658 . . 3 (((𝐶𝐷𝐴) ∈ ℝ ∧ (𝐶𝐷𝐵) ∈ ℝ) → ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
95, 7, 8syl2anc 408 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
103, 9breqtrd 3957 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3932  cfv 5126  (class class class)co 5777  cr 7638   + caddc 7642  cle 7820   +𝑒 cxad 9580  ∞Metcxmet 12175  Metcmet 12176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1re 7733  ax-addrcl 7736  ax-rnegex 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-map 6547  df-pnf 7821  df-mnf 7822  df-xr 7823  df-xadd 9583  df-xmet 12183  df-met 12184
This theorem is referenced by:  mettri  12568  mstri2  12666
  Copyright terms: Public domain W3C validator