| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lss1 | GIF version | ||
| Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2205 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 2 | eqidd 2205 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | 3 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
| 5 | eqidd 2205 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 6 | eqidd 2205 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
| 7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 7 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
| 9 | ssidd 3213 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
| 10 | eqid 2204 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 11 | 3, 10 | lmod0vcl 13997 | . . 3 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
| 12 | elex2 2787 | . . 3 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑗 𝑗 ∈ 𝑉) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ 𝑉) |
| 14 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 15 | eqid 2204 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 16 | eqid 2204 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2204 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 18 | 3, 15, 16, 17 | lmodvscl 13985 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
| 19 | 18 | 3adant3r3 1216 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
| 20 | simpr3 1007 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 21 | eqid 2204 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 22 | 3, 21 | lmodvacl 13982 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
| 23 | 14, 19, 20, 22 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
| 24 | lmodgrp 13974 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 25 | 1, 2, 4, 5, 6, 8, 9, 13, 23, 24 | islssmd 14039 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 Scalarcsca 12831 ·𝑠 cvsca 12832 0gc0g 13006 Grpcgrp 13250 LModclmod 13967 LSubSpclss 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-mulr 12842 df-sca 12844 df-vsca 12845 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-lmod 13969 df-lssm 14033 |
| This theorem is referenced by: lssuni 14043 islss3 14059 lspf 14069 lspval 14070 lidl1 14170 |
| Copyright terms: Public domain | W3C validator |