| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lss1 | GIF version | ||
| Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
| 2 | eqidd 2230 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
| 3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | 3 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
| 5 | eqidd 2230 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 6 | eqidd 2230 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
| 7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 7 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
| 9 | ssidd 3245 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
| 10 | eqid 2229 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 11 | 3, 10 | lmod0vcl 14275 | . . 3 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
| 12 | elex2 2816 | . . 3 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑗 𝑗 ∈ 𝑉) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ 𝑉) |
| 14 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 15 | eqid 2229 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 16 | eqid 2229 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2229 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 18 | 3, 15, 16, 17 | lmodvscl 14263 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
| 19 | 18 | 3adant3r3 1238 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
| 20 | simpr3 1029 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 21 | eqid 2229 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 22 | 3, 21 | lmodvacl 14260 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
| 23 | 14, 19, 20, 22 | syl3anc 1271 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
| 24 | lmodgrp 14252 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 25 | 1, 2, 4, 5, 6, 8, 9, 13, 23, 24 | islssmd 14317 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 Scalarcsca 13108 ·𝑠 cvsca 13109 0gc0g 13284 Grpcgrp 13528 LModclmod 14245 LSubSpclss 14310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-lmod 14247 df-lssm 14311 |
| This theorem is referenced by: lssuni 14321 islss3 14337 lspf 14347 lspval 14348 lidl1 14448 |
| Copyright terms: Public domain | W3C validator |