![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lss1 | GIF version |
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2194 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 3 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
5 | eqidd 2194 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
6 | eqidd 2194 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
9 | ssidd 3200 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
10 | eqid 2193 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
11 | 3, 10 | lmod0vcl 13813 | . . 3 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
12 | elex2 2776 | . . 3 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑗 𝑗 ∈ 𝑉) | |
13 | 11, 12 | syl 14 | . 2 ⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ 𝑉) |
14 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
15 | eqid 2193 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
16 | eqid 2193 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
17 | eqid 2193 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
18 | 3, 15, 16, 17 | lmodvscl 13801 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
19 | 18 | 3adant3r3 1216 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
20 | simpr3 1007 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
21 | eqid 2193 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
22 | 3, 21 | lmodvacl 13798 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
23 | 14, 19, 20, 22 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
24 | lmodgrp 13790 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
25 | 1, 2, 4, 5, 6, 8, 9, 13, 23, 24 | islssmd 13855 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Scalarcsca 12698 ·𝑠 cvsca 12699 0gc0g 12867 Grpcgrp 13072 LModclmod 13783 LSubSpclss 13848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-lmod 13785 df-lssm 13849 |
This theorem is referenced by: lssuni 13859 islss3 13875 lspf 13885 lspval 13886 lidl1 13986 |
Copyright terms: Public domain | W3C validator |