Step | Hyp | Ref
| Expression |
1 | | eqidd 2178 |
. 2
β’ (π β LMod β
(Scalarβπ) =
(Scalarβπ)) |
2 | | eqidd 2178 |
. 2
β’ (π β LMod β
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) |
3 | | lssss.v |
. . 3
β’ π = (Baseβπ) |
4 | 3 | a1i 9 |
. 2
β’ (π β LMod β π = (Baseβπ)) |
5 | | eqidd 2178 |
. 2
β’ (π β LMod β
(+gβπ) =
(+gβπ)) |
6 | | eqidd 2178 |
. 2
β’ (π β LMod β (
Β·π βπ) = ( Β·π
βπ)) |
7 | | lssss.s |
. . 3
β’ π = (LSubSpβπ) |
8 | 7 | a1i 9 |
. 2
β’ (π β LMod β π = (LSubSpβπ)) |
9 | | ssidd 3178 |
. 2
β’ (π β LMod β π β π) |
10 | | eqid 2177 |
. . . 4
β’
(0gβπ) = (0gβπ) |
11 | 3, 10 | lmod0vcl 13412 |
. . 3
β’ (π β LMod β
(0gβπ)
β π) |
12 | | elex2 2755 |
. . 3
β’
((0gβπ) β π β βπ π β π) |
13 | 11, 12 | syl 14 |
. 2
β’ (π β LMod β βπ π β π) |
14 | | simpl 109 |
. . 3
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β LMod) |
15 | | eqid 2177 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
16 | | eqid 2177 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
17 | | eqid 2177 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
18 | 3, 15, 16, 17 | lmodvscl 13400 |
. . . 4
β’ ((π β LMod β§ π₯ β
(Baseβ(Scalarβπ)) β§ π β π) β (π₯( Β·π
βπ)π) β π) |
19 | 18 | 3adant3r3 1214 |
. . 3
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β (π₯( Β·π
βπ)π) β π) |
20 | | simpr3 1005 |
. . 3
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β π β π) |
21 | | eqid 2177 |
. . . 4
β’
(+gβπ) = (+gβπ) |
22 | 3, 21 | lmodvacl 13397 |
. . 3
β’ ((π β LMod β§ (π₯(
Β·π βπ)π) β π β§ π β π) β ((π₯( Β·π
βπ)π)(+gβπ)π) β π) |
23 | 14, 19, 20, 22 | syl3anc 1238 |
. 2
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β π β§ π β π)) β ((π₯( Β·π
βπ)π)(+gβπ)π) β π) |
24 | | lmodgrp 13389 |
. 2
β’ (π β LMod β π β Grp) |
25 | 1, 2, 4, 5, 6, 8, 9, 13, 23, 24 | islssmd 13451 |
1
β’ (π β LMod β π β π) |