ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 GIF version

Theorem lss1 13671
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1 (𝑊 ∈ LMod → 𝑉𝑆)

Proof of Theorem lss1
Dummy variables 𝑎 𝑏 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2190 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lssss.v . . 3 𝑉 = (Base‘𝑊)
43a1i 9 . 2 (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊))
5 eqidd 2190 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
6 eqidd 2190 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
87a1i 9 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
9 ssidd 3191 . 2 (𝑊 ∈ LMod → 𝑉𝑉)
10 eqid 2189 . . . 4 (0g𝑊) = (0g𝑊)
113, 10lmod0vcl 13626 . . 3 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
12 elex2 2768 . . 3 ((0g𝑊) ∈ 𝑉 → ∃𝑗 𝑗𝑉)
1311, 12syl 14 . 2 (𝑊 ∈ LMod → ∃𝑗 𝑗𝑉)
14 simpl 109 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑊 ∈ LMod)
15 eqid 2189 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
16 eqid 2189 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
17 eqid 2189 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
183, 15, 16, 17lmodvscl 13614 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
19183adant3r3 1216 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
20 simpr3 1007 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
21 eqid 2189 . . . 4 (+g𝑊) = (+g𝑊)
223, 21lmodvacl 13611 . . 3 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉𝑏𝑉) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
2314, 19, 20, 22syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
24 lmodgrp 13603 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 13668 1 (𝑊 ∈ LMod → 𝑉𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2160  cfv 5232  (class class class)co 5892  Basecbs 12507  +gcplusg 12582  Scalarcsca 12585   ·𝑠 cvsca 12586  0gc0g 12754  Grpcgrp 12938  LModclmod 13596  LSubSpclss 13661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7927  ax-resscn 7928  ax-1re 7930  ax-addrcl 7933
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240  df-riota 5848  df-ov 5895  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-5 9006  df-6 9007  df-ndx 12510  df-slot 12511  df-base 12513  df-plusg 12595  df-mulr 12596  df-sca 12598  df-vsca 12599  df-0g 12756  df-mgm 12825  df-sgrp 12858  df-mnd 12871  df-grp 12941  df-lmod 13598  df-lssm 13662
This theorem is referenced by:  lssuni  13672  islss3  13688  lspf  13698  lspval  13699  lidl1  13799
  Copyright terms: Public domain W3C validator