ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 GIF version

Theorem lss1 13454
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Baseβ€˜π‘Š)
lssss.s 𝑆 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
lss1 (π‘Š ∈ LMod β†’ 𝑉 ∈ 𝑆)

Proof of Theorem lss1
Dummy variables π‘Ž 𝑏 𝑗 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š))
2 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š)))
3 lssss.v . . 3 𝑉 = (Baseβ€˜π‘Š)
43a1i 9 . 2 (π‘Š ∈ LMod β†’ 𝑉 = (Baseβ€˜π‘Š))
5 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (+gβ€˜π‘Š) = (+gβ€˜π‘Š))
6 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š))
7 lssss.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
87a1i 9 . 2 (π‘Š ∈ LMod β†’ 𝑆 = (LSubSpβ€˜π‘Š))
9 ssidd 3178 . 2 (π‘Š ∈ LMod β†’ 𝑉 βŠ† 𝑉)
10 eqid 2177 . . . 4 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
113, 10lmod0vcl 13412 . . 3 (π‘Š ∈ LMod β†’ (0gβ€˜π‘Š) ∈ 𝑉)
12 elex2 2755 . . 3 ((0gβ€˜π‘Š) ∈ 𝑉 β†’ βˆƒπ‘— 𝑗 ∈ 𝑉)
1311, 12syl 14 . 2 (π‘Š ∈ LMod β†’ βˆƒπ‘— 𝑗 ∈ 𝑉)
14 simpl 109 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ π‘Š ∈ LMod)
15 eqid 2177 . . . . 5 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
16 eqid 2177 . . . . 5 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
17 eqid 2177 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
183, 15, 16, 17lmodvscl 13400 . . . 4 ((π‘Š ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉)
19183adant3r3 1214 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉)
20 simpr3 1005 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ 𝑏 ∈ 𝑉)
21 eqid 2177 . . . 4 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
223, 21lmodvacl 13397 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ 𝑉)
2314, 19, 20, 22syl3anc 1238 . 2 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ 𝑉)
24 lmodgrp 13389 . 2 (π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 13451 1 (π‘Š ∈ LMod β†’ 𝑉 ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  Scalarcsca 12541   ·𝑠 cvsca 12542  0gc0g 12710  Grpcgrp 12882  LModclmod 13382  LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-lmod 13384  df-lssm 13448
This theorem is referenced by:  lssuni  13455  islss3  13471  lspf  13481  lspval  13482
  Copyright terms: Public domain W3C validator