![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lss1 | GIF version |
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss1 | ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2190 | . 2 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊)) | |
2 | eqidd 2190 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 3 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊)) |
5 | eqidd 2190 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
6 | eqidd 2190 | . 2 ⊢ (𝑊 ∈ LMod → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊)) | |
7 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | a1i 9 | . 2 ⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
9 | ssidd 3191 | . 2 ⊢ (𝑊 ∈ LMod → 𝑉 ⊆ 𝑉) | |
10 | eqid 2189 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
11 | 3, 10 | lmod0vcl 13626 | . . 3 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
12 | elex2 2768 | . . 3 ⊢ ((0g‘𝑊) ∈ 𝑉 → ∃𝑗 𝑗 ∈ 𝑉) | |
13 | 11, 12 | syl 14 | . 2 ⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ 𝑉) |
14 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
15 | eqid 2189 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
16 | eqid 2189 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
17 | eqid 2189 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
18 | 3, 15, 16, 17 | lmodvscl 13614 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
19 | 18 | 3adant3r3 1216 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉) |
20 | simpr3 1007 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
21 | eqid 2189 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
22 | 3, 21 | lmodvacl 13611 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠 ‘𝑊)𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
23 | 14, 19, 20, 22 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑉) |
24 | lmodgrp 13603 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
25 | 1, 2, 4, 5, 6, 8, 9, 13, 23, 24 | islssmd 13668 | 1 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ‘cfv 5232 (class class class)co 5892 Basecbs 12507 +gcplusg 12582 Scalarcsca 12585 ·𝑠 cvsca 12586 0gc0g 12754 Grpcgrp 12938 LModclmod 13596 LSubSpclss 13661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-cnex 7927 ax-resscn 7928 ax-1re 7930 ax-addrcl 7933 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5234 df-fn 5235 df-fv 5240 df-riota 5848 df-ov 5895 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-ndx 12510 df-slot 12511 df-base 12513 df-plusg 12595 df-mulr 12596 df-sca 12598 df-vsca 12599 df-0g 12756 df-mgm 12825 df-sgrp 12858 df-mnd 12871 df-grp 12941 df-lmod 13598 df-lssm 13662 |
This theorem is referenced by: lssuni 13672 islss3 13688 lspf 13698 lspval 13699 lidl1 13799 |
Copyright terms: Public domain | W3C validator |