ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 GIF version

Theorem lss1 13918
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1 (𝑊 ∈ LMod → 𝑉𝑆)

Proof of Theorem lss1
Dummy variables 𝑎 𝑏 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2197 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lssss.v . . 3 𝑉 = (Base‘𝑊)
43a1i 9 . 2 (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊))
5 eqidd 2197 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
6 eqidd 2197 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
87a1i 9 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
9 ssidd 3204 . 2 (𝑊 ∈ LMod → 𝑉𝑉)
10 eqid 2196 . . . 4 (0g𝑊) = (0g𝑊)
113, 10lmod0vcl 13873 . . 3 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
12 elex2 2779 . . 3 ((0g𝑊) ∈ 𝑉 → ∃𝑗 𝑗𝑉)
1311, 12syl 14 . 2 (𝑊 ∈ LMod → ∃𝑗 𝑗𝑉)
14 simpl 109 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑊 ∈ LMod)
15 eqid 2196 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
16 eqid 2196 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
17 eqid 2196 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
183, 15, 16, 17lmodvscl 13861 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
19183adant3r3 1216 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
20 simpr3 1007 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
21 eqid 2196 . . . 4 (+g𝑊) = (+g𝑊)
223, 21lmodvacl 13858 . . 3 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉𝑏𝑉) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
2314, 19, 20, 22syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
24 lmodgrp 13850 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 13915 1 (𝑊 ∈ LMod → 𝑉𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1506  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Scalarcsca 12758   ·𝑠 cvsca 12759  0gc0g 12927  Grpcgrp 13132  LModclmod 13843  LSubSpclss 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-lmod 13845  df-lssm 13909
This theorem is referenced by:  lssuni  13919  islss3  13935  lspf  13945  lspval  13946  lidl1  14046
  Copyright terms: Public domain W3C validator