Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc3egv | GIF version |
Description: Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc3egv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2740 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | elisset 2740 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
3 | elisset 2740 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → ∃𝑧 𝑧 = 𝐶) | |
4 | 1, 2, 3 | 3anim123i 1174 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) |
5 | eeeanv 1921 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) |
7 | spc3egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
8 | 7 | biimprcd 159 | . . . 4 ⊢ (𝜓 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜑)) |
9 | 8 | eximdv 1868 | . . 3 ⊢ (𝜓 → (∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜑)) |
10 | 9 | 2eximdv 1870 | . 2 ⊢ (𝜓 → (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑥∃𝑦∃𝑧𝜑)) |
11 | 6, 10 | syl5com 29 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |