![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spc3egv | GIF version |
Description: Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc3egv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2753 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | elisset 2753 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
3 | elisset 2753 | . . . 4 ⊢ (𝐶 ∈ 𝑋 → ∃𝑧 𝑧 = 𝐶) | |
4 | 1, 2, 3 | 3anim123i 1184 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) |
5 | eeeanv 1933 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶)) | |
6 | 4, 5 | sylibr 134 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) |
7 | spc3egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
8 | 7 | biimprcd 160 | . . . 4 ⊢ (𝜓 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → 𝜑)) |
9 | 8 | eximdv 1880 | . . 3 ⊢ (𝜓 → (∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑧𝜑)) |
10 | 9 | 2eximdv 1882 | . 2 ⊢ (𝜓 → (∃𝑥∃𝑦∃𝑧(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ∃𝑥∃𝑦∃𝑧𝜑)) |
11 | 6, 10 | syl5com 29 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝜓 → ∃𝑥∃𝑦∃𝑧𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∃wex 1492 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |