ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b GIF version

Theorem elfz1b 9471
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 9400 . 2 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl 107 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℤ)
3 0red 7468 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 0 ∈ ℝ)
4 1red 7482 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 1 ∈ ℝ)
5 zre 8724 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53jca 1123 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 270 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 0lt1 7589 . . . . . . . . . . . 12 0 < 1
98a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 1)
10 simpr 108 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 1 ≤ 𝑁)
11 ltletr 7553 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
1211imp 122 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1 ≤ 𝑁)) → 0 < 𝑁)
137, 9, 10, 12syl12anc 1172 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 𝑁)
14 elnnz 8730 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152, 13, 14sylanbrc 408 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
1615ex 113 . . . . . . . 8 (𝑁 ∈ ℤ → (1 ≤ 𝑁𝑁 ∈ ℕ))
17163ad2ant3 966 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁𝑁 ∈ ℕ))
1817com12 30 . . . . . 6 (1 ≤ 𝑁 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
1918adantr 270 . . . . 5 ((1 ≤ 𝑁𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
2019impcom 123 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
21 zre 8724 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℝ)
22 zre 8724 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2321, 5, 223anim123i 1128 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233com23 1149 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
25 letr 7547 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
2624, 25syl 14 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
27 simpl 107 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
28 0red 7468 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 ∈ ℝ)
29 1red 7482 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ∈ ℝ)
3022adantr 270 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℝ)
318a1i 9 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 1)
32 simpr 108 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
3328, 29, 30, 31, 32ltletrd 7880 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 𝑀)
34 elnnz 8730 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3527, 33, 34sylanbrc 408 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℕ)
3635ex 113 . . . . . . 7 (𝑀 ∈ ℤ → (1 ≤ 𝑀𝑀 ∈ ℕ))
37363ad2ant2 965 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑀𝑀 ∈ ℕ))
3826, 37syld 44 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 𝑀 ∈ ℕ))
3938imp 122 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
40 simprr 499 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁𝑀)
4120, 39, 403jca 1123 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
42 1zzd 8747 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ∈ ℤ)
43 nnz 8739 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
44433ad2ant2 965 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
45 nnz 8739 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
46453ad2ant1 964 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
4742, 44, 463jca 1123 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 nnge1 8417 . . . . 5 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
49483ad2ant1 964 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ≤ 𝑁)
50 simp3 945 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁𝑀)
5147, 49, 50jca32 303 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
5241, 51impbii 124 . 2 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
531, 52bitri 182 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924  wcel 1438   class class class wbr 3837  (class class class)co 5634  cr 7328  0cc0 7329  1c1 7330   < clt 7501  cle 7502  cn 8394  cz 8720  ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-z 8721  df-fz 9394
This theorem is referenced by:  ubmelfzo  9576
  Copyright terms: Public domain W3C validator