ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b GIF version

Theorem elfz1b 10247
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 10172 . 2 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℤ)
3 0red 8108 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 0 ∈ ℝ)
4 1red 8122 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 1 ∈ ℝ)
5 zre 9411 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53jca 1180 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 0lt1 8234 . . . . . . . . . . . 12 0 < 1
98a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 1)
10 simpr 110 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 1 ≤ 𝑁)
11 ltletr 8197 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
1211imp 124 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1 ≤ 𝑁)) → 0 < 𝑁)
137, 9, 10, 12syl12anc 1248 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 𝑁)
14 elnnz 9417 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152, 13, 14sylanbrc 417 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
1615ex 115 . . . . . . . 8 (𝑁 ∈ ℤ → (1 ≤ 𝑁𝑁 ∈ ℕ))
17163ad2ant3 1023 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁𝑁 ∈ ℕ))
1817com12 30 . . . . . 6 (1 ≤ 𝑁 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
1918adantr 276 . . . . 5 ((1 ≤ 𝑁𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
2019impcom 125 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
21 zre 9411 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℝ)
22 zre 9411 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2321, 5, 223anim123i 1187 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233com23 1212 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
25 letr 8190 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
2624, 25syl 14 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
27 simpl 109 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
28 0red 8108 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 ∈ ℝ)
29 1red 8122 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ∈ ℝ)
3022adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℝ)
318a1i 9 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 1)
32 simpr 110 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
3328, 29, 30, 31, 32ltletrd 8531 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 𝑀)
34 elnnz 9417 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3527, 33, 34sylanbrc 417 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℕ)
3635ex 115 . . . . . . 7 (𝑀 ∈ ℤ → (1 ≤ 𝑀𝑀 ∈ ℕ))
37363ad2ant2 1022 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑀𝑀 ∈ ℕ))
3826, 37syld 45 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 𝑀 ∈ ℕ))
3938imp 124 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
40 simprr 531 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁𝑀)
4120, 39, 403jca 1180 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
42 1zzd 9434 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ∈ ℤ)
43 nnz 9426 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
44433ad2ant2 1022 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
45 nnz 9426 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
46453ad2ant1 1021 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
4742, 44, 463jca 1180 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 nnge1 9094 . . . . 5 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
49483ad2ant1 1021 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ≤ 𝑁)
50 simp3 1002 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁𝑀)
5147, 49, 50jca32 310 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
5241, 51impbii 126 . 2 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
531, 52bitri 184 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959  0cc0 7960  1c1 7961   < clt 8142  cle 8143  cn 9071  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-z 9408  df-fz 10166
This theorem is referenced by:  ubmelfzo  10366  eulerthlema  12667  gausslemma2dlem1a  15650  gausslemma2dlem2  15654  gausslemma2dlem4  15656  cvgcmp2nlemabs  16173
  Copyright terms: Public domain W3C validator