ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b GIF version

Theorem elfz1b 9901
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 9828 . 2 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl 108 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℤ)
3 0red 7791 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 0 ∈ ℝ)
4 1red 7805 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 1 ∈ ℝ)
5 zre 9082 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53jca 1162 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 274 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 0lt1 7913 . . . . . . . . . . . 12 0 < 1
98a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 1)
10 simpr 109 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 1 ≤ 𝑁)
11 ltletr 7877 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
1211imp 123 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1 ≤ 𝑁)) → 0 < 𝑁)
137, 9, 10, 12syl12anc 1215 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 𝑁)
14 elnnz 9088 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152, 13, 14sylanbrc 414 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
1615ex 114 . . . . . . . 8 (𝑁 ∈ ℤ → (1 ≤ 𝑁𝑁 ∈ ℕ))
17163ad2ant3 1005 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁𝑁 ∈ ℕ))
1817com12 30 . . . . . 6 (1 ≤ 𝑁 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
1918adantr 274 . . . . 5 ((1 ≤ 𝑁𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
2019impcom 124 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
21 zre 9082 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℝ)
22 zre 9082 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2321, 5, 223anim123i 1167 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233com23 1188 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
25 letr 7871 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
2624, 25syl 14 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
27 simpl 108 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
28 0red 7791 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 ∈ ℝ)
29 1red 7805 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ∈ ℝ)
3022adantr 274 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℝ)
318a1i 9 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 1)
32 simpr 109 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
3328, 29, 30, 31, 32ltletrd 8209 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 𝑀)
34 elnnz 9088 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3527, 33, 34sylanbrc 414 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℕ)
3635ex 114 . . . . . . 7 (𝑀 ∈ ℤ → (1 ≤ 𝑀𝑀 ∈ ℕ))
37363ad2ant2 1004 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑀𝑀 ∈ ℕ))
3826, 37syld 45 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 𝑀 ∈ ℕ))
3938imp 123 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
40 simprr 522 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁𝑀)
4120, 39, 403jca 1162 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
42 1zzd 9105 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ∈ ℤ)
43 nnz 9097 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
44433ad2ant2 1004 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
45 nnz 9097 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
46453ad2ant1 1003 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
4742, 44, 463jca 1162 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 nnge1 8767 . . . . 5 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
49483ad2ant1 1003 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ≤ 𝑁)
50 simp3 984 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁𝑀)
5147, 49, 50jca32 308 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
5241, 51impbii 125 . 2 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
531, 52bitri 183 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   < clt 7824  cle 7825  cn 8744  cz 9078  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-z 9079  df-fz 9822
This theorem is referenced by:  ubmelfzo  10008  cvgcmp2nlemabs  13402
  Copyright terms: Public domain W3C validator