ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b GIF version

Theorem elfz1b 10165
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 10090 . 2 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℤ)
3 0red 8027 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 0 ∈ ℝ)
4 1red 8041 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 1 ∈ ℝ)
5 zre 9330 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53jca 1179 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 0lt1 8153 . . . . . . . . . . . 12 0 < 1
98a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 1)
10 simpr 110 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 1 ≤ 𝑁)
11 ltletr 8116 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
1211imp 124 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1 ≤ 𝑁)) → 0 < 𝑁)
137, 9, 10, 12syl12anc 1247 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 𝑁)
14 elnnz 9336 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152, 13, 14sylanbrc 417 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
1615ex 115 . . . . . . . 8 (𝑁 ∈ ℤ → (1 ≤ 𝑁𝑁 ∈ ℕ))
17163ad2ant3 1022 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁𝑁 ∈ ℕ))
1817com12 30 . . . . . 6 (1 ≤ 𝑁 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
1918adantr 276 . . . . 5 ((1 ≤ 𝑁𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
2019impcom 125 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
21 zre 9330 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℝ)
22 zre 9330 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2321, 5, 223anim123i 1186 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233com23 1211 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
25 letr 8109 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
2624, 25syl 14 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
27 simpl 109 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
28 0red 8027 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 ∈ ℝ)
29 1red 8041 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ∈ ℝ)
3022adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℝ)
318a1i 9 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 1)
32 simpr 110 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
3328, 29, 30, 31, 32ltletrd 8450 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 𝑀)
34 elnnz 9336 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3527, 33, 34sylanbrc 417 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℕ)
3635ex 115 . . . . . . 7 (𝑀 ∈ ℤ → (1 ≤ 𝑀𝑀 ∈ ℕ))
37363ad2ant2 1021 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑀𝑀 ∈ ℕ))
3826, 37syld 45 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 𝑀 ∈ ℕ))
3938imp 124 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
40 simprr 531 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁𝑀)
4120, 39, 403jca 1179 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
42 1zzd 9353 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ∈ ℤ)
43 nnz 9345 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
44433ad2ant2 1021 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
45 nnz 9345 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
46453ad2ant1 1020 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
4742, 44, 463jca 1179 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 nnge1 9013 . . . . 5 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
49483ad2ant1 1020 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ≤ 𝑁)
50 simp3 1001 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁𝑀)
5147, 49, 50jca32 310 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
5241, 51impbii 126 . 2 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
531, 52bitri 184 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   < clt 8061  cle 8062  cn 8990  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-z 9327  df-fz 10084
This theorem is referenced by:  ubmelfzo  10276  eulerthlema  12398  gausslemma2dlem1a  15299  gausslemma2dlem2  15303  gausslemma2dlem4  15305  cvgcmp2nlemabs  15676
  Copyright terms: Public domain W3C validator