ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b GIF version

Theorem elfz1b 10089
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 10014 . 2 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl 109 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℤ)
3 0red 7957 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 0 ∈ ℝ)
4 1red 7971 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 1 ∈ ℝ)
5 zre 9256 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53jca 1177 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 0lt1 8083 . . . . . . . . . . . 12 0 < 1
98a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 1)
10 simpr 110 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 1 ≤ 𝑁)
11 ltletr 8046 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
1211imp 124 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1 ≤ 𝑁)) → 0 < 𝑁)
137, 9, 10, 12syl12anc 1236 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 0 < 𝑁)
14 elnnz 9262 . . . . . . . . . 10 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152, 13, 14sylanbrc 417 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
1615ex 115 . . . . . . . 8 (𝑁 ∈ ℤ → (1 ≤ 𝑁𝑁 ∈ ℕ))
17163ad2ant3 1020 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁𝑁 ∈ ℕ))
1817com12 30 . . . . . 6 (1 ≤ 𝑁 → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
1918adantr 276 . . . . 5 ((1 ≤ 𝑁𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℕ))
2019impcom 125 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
21 zre 9256 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℝ)
22 zre 9256 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2321, 5, 223anim123i 1184 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
24233com23 1209 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
25 letr 8039 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
2624, 25syl 14 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
27 simpl 109 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℤ)
28 0red 7957 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 ∈ ℝ)
29 1red 7971 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ∈ ℝ)
3022adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℝ)
318a1i 9 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 1)
32 simpr 110 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 1 ≤ 𝑀)
3328, 29, 30, 31, 32ltletrd 8379 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 0 < 𝑀)
34 elnnz 9262 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
3527, 33, 34sylanbrc 417 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 1 ≤ 𝑀) → 𝑀 ∈ ℕ)
3635ex 115 . . . . . . 7 (𝑀 ∈ ℤ → (1 ≤ 𝑀𝑀 ∈ ℕ))
37363ad2ant2 1019 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑀𝑀 ∈ ℕ))
3826, 37syld 45 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 𝑀 ∈ ℕ))
3938imp 124 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
40 simprr 531 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑁𝑀)
4120, 39, 403jca 1177 . . 3 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
42 1zzd 9279 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ∈ ℤ)
43 nnz 9271 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
44433ad2ant2 1019 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
45 nnz 9271 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
46453ad2ant1 1018 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
4742, 44, 463jca 1177 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 nnge1 8941 . . . . 5 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
49483ad2ant1 1018 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 1 ≤ 𝑁)
50 simp3 999 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁𝑀)
5147, 49, 50jca32 310 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
5241, 51impbii 126 . 2 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
531, 52bitri 184 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4003  (class class class)co 5874  cr 7809  0cc0 7810  1c1 7811   < clt 7991  cle 7992  cn 8918  cz 9252  ...cfz 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-z 9253  df-fz 10008
This theorem is referenced by:  ubmelfzo  10199  eulerthlema  12229  cvgcmp2nlemabs  14750
  Copyright terms: Public domain W3C validator