Proof of Theorem elfz1b
| Step | Hyp | Ref
| Expression |
| 1 | | elfz2 10090 |
. 2
⊢ (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤
𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 2 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → 𝑁 ∈ ℤ) |
| 3 | | 0red 8027 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 0 ∈
ℝ) |
| 4 | | 1red 8041 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 1 ∈
ℝ) |
| 5 | | zre 9330 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 6 | 3, 4, 5 | 3jca 1179 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (0 ∈
ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 7 | 6 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → (0 ∈ ℝ
∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 8 | | 0lt1 8153 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
| 9 | 8 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → 0 <
1) |
| 10 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → 1 ≤ 𝑁) |
| 11 | | ltletr 8116 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1
≤ 𝑁) → 0 < 𝑁)) |
| 12 | 11 | imp 124 |
. . . . . . . . . . 11
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (0 < 1 ∧ 1
≤ 𝑁)) → 0 <
𝑁) |
| 13 | 7, 9, 10, 12 | syl12anc 1247 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → 0 < 𝑁) |
| 14 | | elnnz 9336 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
| 15 | 2, 13, 14 | sylanbrc 417 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 1 ≤
𝑁) → 𝑁 ∈ ℕ) |
| 16 | 15 | ex 115 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (1 ≤
𝑁 → 𝑁 ∈ ℕ)) |
| 17 | 16 | 3ad2ant3 1022 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → (1 ≤ 𝑁 → 𝑁 ∈ ℕ)) |
| 18 | 17 | com12 30 |
. . . . . 6
⊢ (1 ≤
𝑁 → ((1 ∈ ℤ
∧ 𝑀 ∈ ℤ
∧ 𝑁 ∈ ℤ)
→ 𝑁 ∈
ℕ)) |
| 19 | 18 | adantr 276 |
. . . . 5
⊢ ((1 ≤
𝑁 ∧ 𝑁 ≤ 𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℕ)) |
| 20 | 19 | impcom 125 |
. . . 4
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ∈ ℕ) |
| 21 | | zre 9330 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → 1 ∈ ℝ) |
| 22 | | zre 9330 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 23 | 21, 5, 22 | 3anim123i 1186 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 𝑀
∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 24 | 23 | 3com23 1211 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → (1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 25 | | letr 8109 |
. . . . . . 7
⊢ ((1
∈ ℝ ∧ 𝑁
∈ ℝ ∧ 𝑀
∈ ℝ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
| 26 | 24, 25 | syl 14 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
| 27 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 𝑀 ∈ ℤ) |
| 28 | | 0red 8027 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 0 ∈
ℝ) |
| 29 | | 1red 8041 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 1 ∈
ℝ) |
| 30 | 22 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 𝑀 ∈ ℝ) |
| 31 | 8 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 0 <
1) |
| 32 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 1 ≤ 𝑀) |
| 33 | 28, 29, 30, 31, 32 | ltletrd 8450 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 0 < 𝑀) |
| 34 | | elnnz 9336 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 <
𝑀)) |
| 35 | 27, 33, 34 | sylanbrc 417 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 1 ≤
𝑀) → 𝑀 ∈ ℕ) |
| 36 | 35 | ex 115 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → (1 ≤
𝑀 → 𝑀 ∈ ℕ)) |
| 37 | 36 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → (1 ≤ 𝑀 → 𝑀 ∈ ℕ)) |
| 38 | 26, 37 | syld 45 |
. . . . 5
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℕ)) |
| 39 | 38 | imp 124 |
. . . 4
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℕ) |
| 40 | | simprr 531 |
. . . 4
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ≤ 𝑀) |
| 41 | 20, 39, 40 | 3jca 1179 |
. . 3
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 42 | | 1zzd 9353 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 1 ∈ ℤ) |
| 43 | | nnz 9345 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 44 | 43 | 3ad2ant2 1021 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑀 ∈ ℤ) |
| 45 | | nnz 9345 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 46 | 45 | 3ad2ant1 1020 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ ℤ) |
| 47 | 42, 44, 46 | 3jca 1179 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈
ℤ)) |
| 48 | | nnge1 9013 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 1 ≤
𝑁) |
| 49 | 48 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑁) |
| 50 | | simp3 1001 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ≤ 𝑀) |
| 51 | 47, 49, 50 | jca32 310 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤
𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 52 | 41, 51 | impbii 126 |
. 2
⊢ (((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 53 | 1, 52 | bitri 184 |
1
⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |