| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > le2tri3i | GIF version | ||
| Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| le2tri3i | ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.3 | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
| 3 | lt.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 4 | 1, 2, 3 | letri 8180 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 ≤ 𝐴) |
| 5 | 3, 1 | letri3i 8171 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
| 6 | 5 | biimpri 133 | . . . . 5 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐴 = 𝐵) |
| 7 | 4, 6 | sylan2 286 | . . . 4 ⊢ ((𝐴 ≤ 𝐵 ∧ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) → 𝐴 = 𝐵) |
| 8 | 7 | 3impb 1202 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐵) |
| 9 | 2, 3, 1 | letri 8180 | . . . . . 6 ⊢ ((𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐶 ≤ 𝐵) |
| 10 | 1, 2 | letri3i 8171 | . . . . . . 7 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 11 | 10 | biimpri 133 | . . . . . 6 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐵 = 𝐶) |
| 12 | 9, 11 | sylan2 286 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ (𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐵 = 𝐶) |
| 13 | 12 | 3impb 1202 | . . . 4 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐵 = 𝐶) |
| 14 | 13 | 3comr 1214 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 = 𝐶) |
| 15 | 3, 1, 2 | letri 8180 | . . . . 5 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
| 16 | 3, 2 | letri3i 8171 | . . . . . . 7 ⊢ (𝐴 = 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
| 17 | 16 | biimpri 133 | . . . . . 6 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐶) |
| 18 | 17 | eqcomd 2211 | . . . . 5 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
| 19 | 15, 18 | sylan 283 | . . . 4 ⊢ (((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
| 20 | 19 | 3impa 1197 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
| 21 | 8, 14, 20 | 3jca 1180 | . 2 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| 22 | 3 | eqlei 8166 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
| 23 | 1 | eqlei 8166 | . . 3 ⊢ (𝐵 = 𝐶 → 𝐵 ≤ 𝐶) |
| 24 | 2 | eqlei 8166 | . . 3 ⊢ (𝐶 = 𝐴 → 𝐶 ≤ 𝐴) |
| 25 | 22, 23, 24 | 3anim123i 1187 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
| 26 | 21, 25 | impbii 126 | 1 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ℝcr 7924 ≤ cle 8108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-apti 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |