ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i GIF version

Theorem le2tri3i 8135
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
le2tri3i ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6 𝐵 ∈ ℝ
2 lt.3 . . . . . 6 𝐶 ∈ ℝ
3 lt.1 . . . . . 6 𝐴 ∈ ℝ
41, 2, 3letri 8134 . . . . 5 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
53, 1letri3i 8125 . . . . . 6 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
65biimpri 133 . . . . 5 ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
74, 6sylan2 286 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐶𝐶𝐴)) → 𝐴 = 𝐵)
873impb 1201 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐴 = 𝐵)
92, 3, 1letri 8134 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
101, 2letri3i 8125 . . . . . . 7 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
1110biimpri 133 . . . . . 6 ((𝐵𝐶𝐶𝐵) → 𝐵 = 𝐶)
129, 11sylan2 286 . . . . 5 ((𝐵𝐶 ∧ (𝐶𝐴𝐴𝐵)) → 𝐵 = 𝐶)
13123impb 1201 . . . 4 ((𝐵𝐶𝐶𝐴𝐴𝐵) → 𝐵 = 𝐶)
14133comr 1213 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐵 = 𝐶)
153, 1, 2letri 8134 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
163, 2letri3i 8125 . . . . . . 7 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
1716biimpri 133 . . . . . 6 ((𝐴𝐶𝐶𝐴) → 𝐴 = 𝐶)
1817eqcomd 2202 . . . . 5 ((𝐴𝐶𝐶𝐴) → 𝐶 = 𝐴)
1915, 18sylan 283 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐶𝐴) → 𝐶 = 𝐴)
20193impa 1196 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 = 𝐴)
218, 14, 203jca 1179 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
223eqlei 8120 . . 3 (𝐴 = 𝐵𝐴𝐵)
231eqlei 8120 . . 3 (𝐵 = 𝐶𝐵𝐶)
242eqlei 8120 . . 3 (𝐶 = 𝐴𝐶𝐴)
2522, 23, 243anim123i 1186 . 2 ((𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴) → (𝐴𝐵𝐵𝐶𝐶𝐴))
2621, 25impbii 126 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cr 7878  cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator