ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2tri3i GIF version

Theorem le2tri3i 8068
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
le2tri3i ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6 𝐵 ∈ ℝ
2 lt.3 . . . . . 6 𝐶 ∈ ℝ
3 lt.1 . . . . . 6 𝐴 ∈ ℝ
41, 2, 3letri 8067 . . . . 5 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
53, 1letri3i 8058 . . . . . 6 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
65biimpri 133 . . . . 5 ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
74, 6sylan2 286 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐶𝐶𝐴)) → 𝐴 = 𝐵)
873impb 1199 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐴 = 𝐵)
92, 3, 1letri 8067 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
101, 2letri3i 8058 . . . . . . 7 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
1110biimpri 133 . . . . . 6 ((𝐵𝐶𝐶𝐵) → 𝐵 = 𝐶)
129, 11sylan2 286 . . . . 5 ((𝐵𝐶 ∧ (𝐶𝐴𝐴𝐵)) → 𝐵 = 𝐶)
13123impb 1199 . . . 4 ((𝐵𝐶𝐶𝐴𝐴𝐵) → 𝐵 = 𝐶)
14133comr 1211 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐵 = 𝐶)
153, 1, 2letri 8067 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
163, 2letri3i 8058 . . . . . . 7 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
1716biimpri 133 . . . . . 6 ((𝐴𝐶𝐶𝐴) → 𝐴 = 𝐶)
1817eqcomd 2183 . . . . 5 ((𝐴𝐶𝐶𝐴) → 𝐶 = 𝐴)
1915, 18sylan 283 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐶𝐴) → 𝐶 = 𝐴)
20193impa 1194 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 = 𝐴)
218, 14, 203jca 1177 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
223eqlei 8053 . . 3 (𝐴 = 𝐵𝐴𝐵)
231eqlei 8053 . . 3 (𝐵 = 𝐶𝐵𝐶)
242eqlei 8053 . . 3 (𝐶 = 𝐴𝐶𝐴)
2522, 23, 243anim123i 1184 . 2 ((𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴) → (𝐴𝐵𝐵𝐶𝐶𝐴))
2621, 25impbii 126 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  cr 7812  cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-apti 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator