Proof of Theorem modmulconst
| Step | Hyp | Ref
| Expression |
| 1 | | nnz 9345 |
. . . . 5
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 2 | 1 | adantl 277 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℤ) |
| 3 | | zsubcl 9367 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) |
| 4 | 3 | 3adant3 1019 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 − 𝐵) ∈ ℤ) |
| 5 | 4 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐴 − 𝐵) ∈ ℤ) |
| 6 | | nnz 9345 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 7 | | nnne0 9018 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → 𝐶 ≠ 0) |
| 8 | 6, 7 | jca 306 |
. . . . . 6
⊢ (𝐶 ∈ ℕ → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) |
| 9 | 8 | 3ad2ant3 1022 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) |
| 10 | 9 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) |
| 11 | | dvdscmulr 11985 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴 − 𝐵)) ↔ 𝑀 ∥ (𝐴 − 𝐵))) |
| 12 | 11 | bicomd 141 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → (𝑀 ∥ (𝐴 − 𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴 − 𝐵)))) |
| 13 | 2, 5, 10, 12 | syl3anc 1249 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴 − 𝐵)))) |
| 14 | | zcn 9331 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 15 | | zcn 9331 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 16 | | nncn 8998 |
. . . . . . . 8
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
| 17 | 14, 15, 16 | 3anim123i 1186 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈
ℂ)) |
| 18 | | 3anrot 985 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈
ℂ)) |
| 19 | 17, 18 | sylibr 134 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈
ℂ)) |
| 20 | | subdi 8411 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴 − 𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵))) |
| 21 | 19, 20 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · (𝐴 − 𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵))) |
| 22 | 21 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · (𝐴 − 𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵))) |
| 23 | 22 | breq2d 4045 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴 − 𝐵)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵)))) |
| 24 | 13, 23 | bitrd 188 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵)))) |
| 25 | | simpr 110 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈
ℕ) |
| 26 | | simp1 999 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 27 | 26 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 28 | | simp2 1000 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
| 29 | 28 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐵 ∈
ℤ) |
| 30 | | moddvds 11964 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴 − 𝐵))) |
| 31 | 25, 27, 29, 30 | syl3anc 1249 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴 − 𝐵))) |
| 32 | | simpl3 1004 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐶 ∈
ℕ) |
| 33 | 32, 25 | nnmulcld 9039 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝑀) ∈ ℕ) |
| 34 | 6 | 3ad2ant3 1022 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
| 35 | 34, 26 | zmulcld 9454 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ) |
| 36 | 35 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ) |
| 37 | 34, 28 | zmulcld 9454 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ) |
| 38 | 37 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ) |
| 39 | | moddvds 11964 |
. . 3
⊢ (((𝐶 · 𝑀) ∈ ℕ ∧ (𝐶 · 𝐴) ∈ ℤ ∧ (𝐶 · 𝐵) ∈ ℤ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵)))) |
| 40 | 33, 36, 38, 39 | syl3anc 1249 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵)))) |
| 41 | 24, 31, 40 | 3bitr4d 220 |
1
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)))) |