ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modmulconst GIF version

Theorem modmulconst 11830
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐ด mod ๐‘€) = (๐ต mod ๐‘€) โ†” ((๐ถ ยท ๐ด) mod (๐ถ ยท ๐‘€)) = ((๐ถ ยท ๐ต) mod (๐ถ ยท ๐‘€))))

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 9272 . . . . 5 (๐‘€ โˆˆ โ„• โ†’ ๐‘€ โˆˆ โ„ค)
21adantl 277 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ๐‘€ โˆˆ โ„ค)
3 zsubcl 9294 . . . . . 6 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„ค)
433adant3 1017 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„ค)
54adantr 276 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„ค)
6 nnz 9272 . . . . . . 7 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„ค)
7 nnne0 8947 . . . . . . 7 (๐ถ โˆˆ โ„• โ†’ ๐ถ โ‰  0)
86, 7jca 306 . . . . . 6 (๐ถ โˆˆ โ„• โ†’ (๐ถ โˆˆ โ„ค โˆง ๐ถ โ‰  0))
983ad2ant3 1020 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆˆ โ„ค โˆง ๐ถ โ‰  0))
109adantr 276 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ถ โˆˆ โ„ค โˆง ๐ถ โ‰  0))
11 dvdscmulr 11827 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง (๐ด โˆ’ ๐ต) โˆˆ โ„ค โˆง (๐ถ โˆˆ โ„ค โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐‘€) โˆฅ (๐ถ ยท (๐ด โˆ’ ๐ต)) โ†” ๐‘€ โˆฅ (๐ด โˆ’ ๐ต)))
1211bicomd 141 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง (๐ด โˆ’ ๐ต) โˆˆ โ„ค โˆง (๐ถ โˆˆ โ„ค โˆง ๐ถ โ‰  0)) โ†’ (๐‘€ โˆฅ (๐ด โˆ’ ๐ต) โ†” (๐ถ ยท ๐‘€) โˆฅ (๐ถ ยท (๐ด โˆ’ ๐ต))))
132, 5, 10, 12syl3anc 1238 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘€ โˆฅ (๐ด โˆ’ ๐ต) โ†” (๐ถ ยท ๐‘€) โˆฅ (๐ถ ยท (๐ด โˆ’ ๐ต))))
14 zcn 9258 . . . . . . . 8 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„‚)
15 zcn 9258 . . . . . . . 8 (๐ต โˆˆ โ„ค โ†’ ๐ต โˆˆ โ„‚)
16 nncn 8927 . . . . . . . 8 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„‚)
1714, 15, 163anim123i 1184 . . . . . . 7 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚))
18 3anrot 983 . . . . . . 7 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†” (๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚))
1917, 18sylibr 134 . . . . . 6 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚))
20 subdi 8342 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด โˆ’ ๐ต)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
2119, 20syl 14 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ ยท (๐ด โˆ’ ๐ต)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
2221adantr 276 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ถ ยท (๐ด โˆ’ ๐ต)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
2322breq2d 4016 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐ถ ยท ๐‘€) โˆฅ (๐ถ ยท (๐ด โˆ’ ๐ต)) โ†” (๐ถ ยท ๐‘€) โˆฅ ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต))))
2413, 23bitrd 188 . 2 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘€ โˆฅ (๐ด โˆ’ ๐ต) โ†” (๐ถ ยท ๐‘€) โˆฅ ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต))))
25 simpr 110 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ๐‘€ โˆˆ โ„•)
26 simp1 997 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„ค)
2726adantr 276 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„ค)
28 simp2 998 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„ค)
2928adantr 276 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„ค)
30 moddvds 11806 . . 3 ((๐‘€ โˆˆ โ„• โˆง ๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ ((๐ด mod ๐‘€) = (๐ต mod ๐‘€) โ†” ๐‘€ โˆฅ (๐ด โˆ’ ๐ต)))
3125, 27, 29, 30syl3anc 1238 . 2 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐ด mod ๐‘€) = (๐ต mod ๐‘€) โ†” ๐‘€ โˆฅ (๐ด โˆ’ ๐ต)))
32 simpl3 1002 . . . 4 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„•)
3332, 25nnmulcld 8968 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ถ ยท ๐‘€) โˆˆ โ„•)
3463ad2ant3 1020 . . . . 5 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„ค)
3534, 26zmulcld 9381 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ ยท ๐ด) โˆˆ โ„ค)
3635adantr 276 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ถ ยท ๐ด) โˆˆ โ„ค)
3734, 28zmulcld 9381 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„ค)
3837adantr 276 . . 3 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„ค)
39 moddvds 11806 . . 3 (((๐ถ ยท ๐‘€) โˆˆ โ„• โˆง (๐ถ ยท ๐ด) โˆˆ โ„ค โˆง (๐ถ ยท ๐ต) โˆˆ โ„ค) โ†’ (((๐ถ ยท ๐ด) mod (๐ถ ยท ๐‘€)) = ((๐ถ ยท ๐ต) mod (๐ถ ยท ๐‘€)) โ†” (๐ถ ยท ๐‘€) โˆฅ ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต))))
4033, 36, 38, 39syl3anc 1238 . 2 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ (((๐ถ ยท ๐ด) mod (๐ถ ยท ๐‘€)) = ((๐ถ ยท ๐ต) mod (๐ถ ยท ๐‘€)) โ†” (๐ถ ยท ๐‘€) โˆฅ ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต))))
4124, 31, 403bitr4d 220 1 (((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค โˆง ๐ถ โˆˆ โ„•) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐ด mod ๐‘€) = (๐ต mod ๐‘€) โ†” ((๐ถ ยท ๐ด) mod (๐ถ ยท ๐‘€)) = ((๐ถ ยท ๐ต) mod (๐ถ ยท ๐‘€))))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347   class class class wbr 4004  (class class class)co 5875  โ„‚cc 7809  0cc0 7811   ยท cmul 7816   โˆ’ cmin 8128  โ„•cn 8919  โ„คcz 9253   mod cmo 10322   โˆฅ cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-q 9620  df-rp 9654  df-fl 10270  df-mod 10323  df-dvds 11795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator