ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modmulconst GIF version

Theorem modmulconst 12134
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 9391 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21adantl 277 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
3 zsubcl 9413 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
433adant3 1020 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
54adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
6 nnz 9391 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
7 nnne0 9064 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
86, 7jca 306 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
983ad2ant3 1023 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
109adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
11 dvdscmulr 12131 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ 𝑀 ∥ (𝐴𝐵)))
1211bicomd 141 . . . 4 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
132, 5, 10, 12syl3anc 1250 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
14 zcn 9377 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
15 zcn 9377 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16 nncn 9044 . . . . . . . 8 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
1714, 15, 163anim123i 1187 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
18 3anrot 986 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
1917, 18sylibr 134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
20 subdi 8457 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2119, 20syl 14 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2221adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2322breq2d 4056 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
2413, 23bitrd 188 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
25 simpr 110 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
26 simp1 1000 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2726adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℤ)
28 simp2 1001 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2928adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 moddvds 12110 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
3125, 27, 29, 30syl3anc 1250 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
32 simpl3 1005 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐶 ∈ ℕ)
3332, 25nnmulcld 9085 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝑀) ∈ ℕ)
3463ad2ant3 1023 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3534, 26zmulcld 9501 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3635adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3734, 28zmulcld 9501 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
3837adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
39 moddvds 12110 . . 3 (((𝐶 · 𝑀) ∈ ℕ ∧ (𝐶 · 𝐴) ∈ ℤ ∧ (𝐶 · 𝐵) ∈ ℤ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4033, 36, 38, 39syl3anc 1250 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4124, 31, 403bitr4d 220 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  wne 2376   class class class wbr 4044  (class class class)co 5944  cc 7923  0cc0 7925   · cmul 7930  cmin 8243  cn 9036  cz 9372   mod cmo 10467  cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-dvds 12099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator