ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0fzfz0 GIF version

Theorem elfz0fzfz0 9502
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 9493 . . . 4 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
2 elfz2 9400 . . . . . 6 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
3 nn0re 8652 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
4 nn0re 8652 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
5 zre 8724 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53anim123i 1128 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
763expa 1143 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 letr 7547 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
97, 8syl 14 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
10 simplll 500 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
11 simpr 108 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1211adantr 270 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
13 elnn0z 8733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
14 0red 7468 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
15 zre 8724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1615adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
175adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
18 letr 7547 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1914, 16, 17, 18syl3anc 1174 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
2019exp4b 359 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (0 ≤ 𝑀 → (𝑀𝑁 → 0 ≤ 𝑁))))
2120com23 77 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → (0 ≤ 𝑀 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁))))
2221imp 122 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2313, 22sylbi 119 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2423adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2524imp 122 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → 0 ≤ 𝑁))
2625imp 122 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
27 elnn0z 8733 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2812, 26, 27sylanbrc 408 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
29 simpr 108 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
3010, 28, 293jca 1123 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
3130ex 113 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
329, 31syld 44 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
3332exp4b 359 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝐿 → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
3433com23 77 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀𝐿 → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
35343impia 1140 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3635com13 79 . . . . . . . . . 10 (𝐿𝑁 → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3736adantr 270 . . . . . . . . 9 ((𝐿𝑁𝑁𝑋) → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3837com12 30 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
39383ad2ant3 966 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
4039imp 122 . . . . . 6 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
412, 40sylbi 119 . . . . 5 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4241com12 30 . . . 4 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
431, 42sylbi 119 . . 3 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4443imp 122 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
45 elfz2nn0 9493 . 2 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
4644, 45sylibr 132 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924  wcel 1438   class class class wbr 3837  (class class class)co 5634  cr 7328  0cc0 7329  cle 7502  0cn0 8643  cz 8720  ...cfz 9393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator