ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0fzfz0 GIF version

Theorem elfz0fzfz0 10082
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 10068 . . . 4 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
2 elfz2 9972 . . . . . 6 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
3 nn0re 9144 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
4 nn0re 9144 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
5 zre 9216 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53anim123i 1179 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
763expa 1198 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 letr 8002 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
97, 8syl 14 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
10 simplll 528 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
11 simpr 109 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1211adantr 274 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
13 elnn0z 9225 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
14 0red 7921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
15 zre 9216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1615adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
175adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
18 letr 8002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1914, 16, 17, 18syl3anc 1233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
2019exp4b 365 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (0 ≤ 𝑀 → (𝑀𝑁 → 0 ≤ 𝑁))))
2120com23 78 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → (0 ≤ 𝑀 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁))))
2221imp 123 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2313, 22sylbi 120 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2423adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2524imp 123 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → 0 ≤ 𝑁))
2625imp 123 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
27 elnn0z 9225 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2812, 26, 27sylanbrc 415 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
29 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
3010, 28, 293jca 1172 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
3130ex 114 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
329, 31syld 45 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
3332exp4b 365 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝐿 → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
3433com23 78 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀𝐿 → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
35343impia 1195 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3635com13 80 . . . . . . . . . 10 (𝐿𝑁 → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3736adantr 274 . . . . . . . . 9 ((𝐿𝑁𝑁𝑋) → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3837com12 30 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
39383ad2ant3 1015 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
4039imp 123 . . . . . 6 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
412, 40sylbi 120 . . . . 5 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4241com12 30 . . . 4 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
431, 42sylbi 120 . . 3 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4443imp 123 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
45 elfz2nn0 10068 . 2 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
4644, 45sylibr 133 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973  wcel 2141   class class class wbr 3989  (class class class)co 5853  cr 7773  0cc0 7774  cle 7955  0cn0 9135  cz 9212  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator