ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0fzfz0 GIF version

Theorem elfz0fzfz0 10283
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 10269 . . . 4 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
2 elfz2 10172 . . . . . 6 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
3 nn0re 9339 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
4 nn0re 9339 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
5 zre 9411 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53anim123i 1187 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
763expa 1206 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 letr 8190 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
97, 8syl 14 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
10 simplll 533 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
11 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1211adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
13 elnn0z 9420 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
14 0red 8108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
15 zre 9411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1615adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
175adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
18 letr 8190 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1914, 16, 17, 18syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
2019exp4b 367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (0 ≤ 𝑀 → (𝑀𝑁 → 0 ≤ 𝑁))))
2120com23 78 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → (0 ≤ 𝑀 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁))))
2221imp 124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2313, 22sylbi 121 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2423adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2524imp 124 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → 0 ≤ 𝑁))
2625imp 124 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
27 elnn0z 9420 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2812, 26, 27sylanbrc 417 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
29 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
3010, 28, 293jca 1180 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
3130ex 115 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
329, 31syld 45 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
3332exp4b 367 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝐿 → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
3433com23 78 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀𝐿 → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
35343impia 1203 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3635com13 80 . . . . . . . . . 10 (𝐿𝑁 → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3736adantr 276 . . . . . . . . 9 ((𝐿𝑁𝑁𝑋) → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3837com12 30 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
39383ad2ant3 1023 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
4039imp 124 . . . . . 6 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
412, 40sylbi 121 . . . . 5 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4241com12 30 . . . 4 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
431, 42sylbi 121 . . 3 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4443imp 124 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
45 elfz2nn0 10269 . 2 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
4644, 45sylibr 134 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959  0cc0 7960  cle 8143  0cn0 9330  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by:  pfxccatin12lem2c  11221
  Copyright terms: Public domain W3C validator