ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz0fzfz0 GIF version

Theorem elfz0fzfz0 10248
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 10234 . . . 4 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
2 elfz2 10137 . . . . . 6 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
3 nn0re 9304 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
4 nn0re 9304 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
5 zre 9376 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53anim123i 1187 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
763expa 1206 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 letr 8155 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
97, 8syl 14 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
10 simplll 533 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
11 simpr 110 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1211adantr 276 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
13 elnn0z 9385 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
14 0red 8073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
15 zre 9376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1615adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
175adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
18 letr 8155 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1914, 16, 17, 18syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
2019exp4b 367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (0 ≤ 𝑀 → (𝑀𝑁 → 0 ≤ 𝑁))))
2120com23 78 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → (0 ≤ 𝑀 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁))))
2221imp 124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2313, 22sylbi 121 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2423adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2524imp 124 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → 0 ≤ 𝑁))
2625imp 124 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
27 elnn0z 9385 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2812, 26, 27sylanbrc 417 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
29 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
3010, 28, 293jca 1180 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
3130ex 115 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
329, 31syld 45 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
3332exp4b 367 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝐿 → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
3433com23 78 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀𝐿 → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
35343impia 1203 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3635com13 80 . . . . . . . . . 10 (𝐿𝑁 → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3736adantr 276 . . . . . . . . 9 ((𝐿𝑁𝑁𝑋) → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3837com12 30 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
39383ad2ant3 1023 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
4039imp 124 . . . . . 6 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
412, 40sylbi 121 . . . . 5 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4241com12 30 . . . 4 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
431, 42sylbi 121 . . 3 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4443imp 124 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
45 elfz2nn0 10234 . 2 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
4644, 45sylibr 134 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2176   class class class wbr 4044  (class class class)co 5944  cr 7924  0cc0 7925  cle 8108  0cn0 9295  cz 9372  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator