Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flltdivnn0lt | GIF version |
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
Ref | Expression |
---|---|
flltdivnn0lt | ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 982 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 𝐾 ∈ ℕ0) | |
2 | 1 | nn0zd 9284 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 𝐾 ∈ ℤ) |
3 | simp3 984 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 𝐿 ∈ ℕ) | |
4 | znq 9533 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℚ) | |
5 | 4 | flqcld 10176 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ) |
6 | 2, 3, 5 | syl2anc 409 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ) |
7 | 6 | adantr 274 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ∈ ℤ) |
8 | 7 | zred 9286 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) |
9 | 2 | adantr 274 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℤ) |
10 | 3 | adantr 274 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐿 ∈ ℕ) |
11 | qre 9534 | . . . . 5 ⊢ ((𝐾 / 𝐿) ∈ ℚ → (𝐾 / 𝐿) ∈ ℝ) | |
12 | 4, 11 | syl 14 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) |
13 | 9, 10, 12 | syl2anc 409 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) ∈ ℝ) |
14 | simp2 983 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 𝑁 ∈ ℕ0) | |
15 | 14 | nn0zd 9284 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 𝑁 ∈ ℤ) |
16 | 15 | adantr 274 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ) |
17 | znq 9533 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℚ) | |
18 | qre 9534 | . . . . 5 ⊢ ((𝑁 / 𝐿) ∈ ℚ → (𝑁 / 𝐿) ∈ ℝ) | |
19 | 17, 18 | syl 14 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ) |
20 | 16, 10, 19 | syl2anc 409 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝑁 / 𝐿) ∈ ℝ) |
21 | fldivnn0le 10202 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | |
22 | 21 | 3adant2 1001 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) |
23 | 22 | adantr 274 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) |
24 | simpr 109 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
25 | nn0re 9099 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
26 | nn0re 9099 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
27 | nnre 8840 | . . . . . . . 8 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℝ) | |
28 | nngt0 8858 | . . . . . . . 8 ⊢ (𝐿 ∈ ℕ → 0 < 𝐿) | |
29 | 27, 28 | jca 304 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿)) |
30 | 25, 26, 29 | 3anim123i 1167 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿))) |
31 | 30 | adantr 274 | . . . . 5 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿))) |
32 | ltdiv1 8739 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿))) | |
33 | 31, 32 | syl 14 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿))) |
34 | 24, 33 | mpbid 146 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿)) |
35 | 8, 13, 20, 23, 34 | lelttrd 8000 | . 2 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)) |
36 | 35 | ex 114 | 1 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 ∈ wcel 2128 class class class wbr 3965 ‘cfv 5170 (class class class)co 5824 ℝcr 7731 0cc0 7732 < clt 7912 ≤ cle 7913 / cdiv 8545 ℕcn 8833 ℕ0cn0 9090 ℤcz 9167 ℚcq 9528 ⌊cfl 10167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-n0 9091 df-z 9168 df-q 9529 df-rp 9561 df-fl 10169 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |