![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzo1 | GIF version |
Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
elfzo1 | ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzossnn 10218 | . . . 4 ⊢ (1..^𝑀) ⊆ ℕ | |
2 | 1 | sseli 3166 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 ∈ ℕ) |
3 | elfzouz2 10190 | . . . 4 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
4 | eluznn 9629 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | |
5 | 2, 3, 4 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ ℕ) |
6 | elfzolt2 10185 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) → 𝑁 < 𝑀) | |
7 | 2, 5, 6 | 3jca 1179 | . 2 ⊢ (𝑁 ∈ (1..^𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
8 | nnuz 9592 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
9 | 8 | eqimssi 3226 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
10 | 9 | sseli 3166 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
11 | nnz 9301 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
12 | id 19 | . . . 4 ⊢ (𝑁 < 𝑀 → 𝑁 < 𝑀) | |
13 | 10, 11, 12 | 3anim123i 1186 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) |
14 | elfzo2 10179 | . . 3 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ (ℤ≥‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀)) | |
15 | 13, 14 | sylibr 134 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → 𝑁 ∈ (1..^𝑀)) |
16 | 7, 15 | impbii 126 | 1 ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∧ w3a 980 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5895 1c1 7841 < clt 8021 ℕcn 8948 ℤcz 9282 ℤ≥cuz 9557 ..^cfzo 10171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-ltwlin 7953 ax-pre-lttrn 7954 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-pnf 8023 df-mnf 8024 df-xr 8025 df-ltxr 8026 df-le 8027 df-sub 8159 df-neg 8160 df-inn 8949 df-n0 9206 df-z 9283 df-uz 9558 df-fz 10038 df-fzo 10172 |
This theorem is referenced by: modfzo0difsn 10425 modsumfzodifsn 10426 eulerthlema 12261 modprm0 12285 nconstwlpolemgt0 15266 |
Copyright terms: Public domain | W3C validator |