ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzo1 GIF version

Theorem elfzo1 10192
Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
elfzo1 (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀))

Proof of Theorem elfzo1
StepHypRef Expression
1 fzossnn 10191 . . . 4 (1..^𝑀) ⊆ ℕ
21sseli 3153 . . 3 (𝑁 ∈ (1..^𝑀) → 𝑁 ∈ ℕ)
3 elfzouz2 10163 . . . 4 (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ𝑁))
4 eluznn 9602 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ)
52, 3, 4syl2anc 411 . . 3 (𝑁 ∈ (1..^𝑀) → 𝑀 ∈ ℕ)
6 elfzolt2 10158 . . 3 (𝑁 ∈ (1..^𝑀) → 𝑁 < 𝑀)
72, 5, 63jca 1177 . 2 (𝑁 ∈ (1..^𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀))
8 nnuz 9565 . . . . . 6 ℕ = (ℤ‘1)
98eqimssi 3213 . . . . 5 ℕ ⊆ (ℤ‘1)
109sseli 3153 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
11 nnz 9274 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
12 id 19 . . . 4 (𝑁 < 𝑀𝑁 < 𝑀)
1310, 11, 123anim123i 1184 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → (𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀))
14 elfzo2 10152 . . 3 (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀))
1513, 14sylibr 134 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀) → 𝑁 ∈ (1..^𝑀))
167, 15impbii 126 1 (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 978  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  1c1 7814   < clt 7994  cn 8921  cz 9255  cuz 9530  ..^cfzo 10144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145
This theorem is referenced by:  modfzo0difsn  10397  modsumfzodifsn  10398  eulerthlema  12232  modprm0  12256  nconstwlpolemgt0  14897
  Copyright terms: Public domain W3C validator