Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnnz | GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elnnz | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8885 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | orc 707 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
3 | nngt0 8903 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 1, 2, 3 | jca31 307 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
5 | idd 21 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) | |
6 | lt0neg2 8388 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0)) | |
7 | renegcl 8180 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℝ → -𝑁 ∈ ℝ) | |
8 | 0re 7920 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℝ | |
9 | ltnsym 8005 | . . . . . . . . . . . . 13 ⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁)) | |
10 | 7, 8, 9 | sylancl 411 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁)) |
11 | 6, 10 | sylbid 149 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁)) |
12 | 11 | imp 123 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁) |
13 | nngt0 8903 | . . . . . . . . . 10 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
14 | 12, 13 | nsyl 623 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ) |
15 | gt0ne0 8346 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0) | |
16 | 15 | neneqd 2361 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
17 | ioran 747 | . . . . . . . . 9 ⊢ (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0)) | |
18 | 14, 16, 17 | sylanbrc 415 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
19 | 18 | pm2.21d 614 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ)) |
20 | 5, 19 | jaod 712 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)) |
21 | 20 | ex 114 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))) |
22 | 21 | com23 78 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁 → 𝑁 ∈ ℕ))) |
23 | 22 | imp31 254 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
24 | 4, 23 | impbii 125 | . 2 ⊢ (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
25 | elz 9214 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
26 | 3orrot 979 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 3orass 976 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
28 | 26, 27 | bitri 183 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
29 | 28 | anbi2i 454 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
30 | 25, 29 | bitri 183 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
31 | 30 | anbi1i 455 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
32 | 24, 31 | bitr4i 186 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 |
This theorem is referenced by: nnssz 9229 elnnz1 9235 znnsub 9263 nn0ge0div 9299 msqznn 9312 elpq 9607 elfz1b 10046 lbfzo0 10137 fzo1fzo0n0 10139 elfzo0z 10140 fzofzim 10144 elfzodifsumelfzo 10157 exp3val 10478 nnesq 10595 nnabscl 11064 cvgratnnlemabsle 11490 p1modz1 11756 nndivdvds 11758 zdvdsdc 11774 oddge22np1 11840 evennn2n 11842 nno 11865 nnoddm1d2 11869 divalglemex 11881 divalglemeuneg 11882 divalg 11883 ndvdsadd 11890 sqgcd 11984 qredeu 12051 prmind2 12074 sqrt2irrlem 12115 sqrt2irrap 12134 qgt0numnn 12153 oddprm 12213 pythagtriplem6 12224 pythagtriplem11 12228 pythagtriplem13 12230 pythagtriplem19 12236 pc2dvds 12283 pcadd 12293 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |