| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnnz | GIF version | ||
| Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elnnz | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9016 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | orc 713 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
| 3 | nngt0 9034 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 4 | 1, 2, 3 | jca31 309 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
| 5 | idd 21 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) | |
| 6 | lt0neg2 8515 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0)) | |
| 7 | renegcl 8306 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℝ → -𝑁 ∈ ℝ) | |
| 8 | 0re 8045 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℝ | |
| 9 | ltnsym 8131 | . . . . . . . . . . . . 13 ⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁)) | |
| 10 | 7, 8, 9 | sylancl 413 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁)) |
| 11 | 6, 10 | sylbid 150 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁)) |
| 12 | 11 | imp 124 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁) |
| 13 | nngt0 9034 | . . . . . . . . . 10 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
| 14 | 12, 13 | nsyl 629 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ) |
| 15 | gt0ne0 8473 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0) | |
| 16 | 15 | neneqd 2388 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
| 17 | ioran 753 | . . . . . . . . 9 ⊢ (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0)) | |
| 18 | 14, 16, 17 | sylanbrc 417 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 19 | 18 | pm2.21d 620 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ)) |
| 20 | 5, 19 | jaod 718 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)) |
| 21 | 20 | ex 115 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))) |
| 22 | 21 | com23 78 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁 → 𝑁 ∈ ℕ))) |
| 23 | 22 | imp31 256 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
| 24 | 4, 23 | impbii 126 | . 2 ⊢ (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
| 25 | elz 9347 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 26 | 3orrot 986 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 27 | 3orass 983 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
| 28 | 26, 27 | bitri 184 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
| 29 | 28 | anbi2i 457 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
| 30 | 25, 29 | bitri 184 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
| 31 | 30 | anbi1i 458 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
| 32 | 24, 31 | bitr4i 187 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 -cneg 8217 ℕcn 9009 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-z 9346 |
| This theorem is referenced by: nnssz 9362 elnnz1 9368 znnsub 9396 nn0ge0div 9432 msqznn 9445 elpq 9742 elfz1b 10184 lbfzo0 10276 fzo1fzo0n0 10278 elfzo0z 10279 fzofzim 10283 elfzodifsumelfzo 10296 exp3val 10652 nnesq 10770 nnabscl 11284 cvgratnnlemabsle 11711 p1modz1 11978 nndivdvds 11980 zdvdsdc 11996 oddge22np1 12065 evennn2n 12067 nno 12090 nnoddm1d2 12094 divalglemex 12106 divalglemeuneg 12107 divalg 12108 ndvdsadd 12115 bitsfzolem 12138 sqgcd 12223 qredeu 12292 prmind2 12315 sqrt2irrlem 12356 sqrt2irrap 12375 qgt0numnn 12394 oddprm 12455 pythagtriplem6 12466 pythagtriplem11 12470 pythagtriplem13 12472 pythagtriplem19 12478 pc2dvds 12526 pcadd 12536 4sqlem11 12597 4sqlem12 12598 mulgval 13330 mulgfng 13332 subgmulg 13396 znidomb 14292 sgmnncl 15332 mersenne 15341 gausslemma2dlem1a 15407 lgseisenlem1 15419 lgsquadlem1 15426 lgsquadlem2 15427 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |