ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnnz GIF version

Theorem elnnz 9327
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elnnz (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))

Proof of Theorem elnnz
StepHypRef Expression
1 nnre 8989 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 orc 713 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
3 nngt0 9007 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
41, 2, 3jca31 309 . . 3 (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
5 idd 21 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
6 lt0neg2 8488 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0))
7 renegcl 8280 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → -𝑁 ∈ ℝ)
8 0re 8019 . . . . . . . . . . . . 13 0 ∈ ℝ
9 ltnsym 8105 . . . . . . . . . . . . 13 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
107, 8, 9sylancl 413 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
116, 10sylbid 150 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁))
1211imp 124 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁)
13 nngt0 9007 . . . . . . . . . 10 (-𝑁 ∈ ℕ → 0 < -𝑁)
1412, 13nsyl 629 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ)
15 gt0ne0 8446 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
1615neneqd 2385 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0)
17 ioran 753 . . . . . . . . 9 (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0))
1814, 16, 17sylanbrc 417 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))
1918pm2.21d 620 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ))
205, 19jaod 718 . . . . . 6 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))
2120ex 115 . . . . 5 (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)))
2221com23 78 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁𝑁 ∈ ℕ)))
2322imp31 256 . . 3 (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
244, 23impbii 126 . 2 (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
25 elz 9319 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
26 3orrot 986 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0))
27 3orass 983 . . . . . 6 ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2826, 27bitri 184 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2928anbi2i 457 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3025, 29bitri 184 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
3130anbi1i 458 . 2 ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁))
3224, 31bitr4i 187 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164   class class class wbr 4029  cr 7871  0cc0 7872   < clt 8054  -cneg 8191  cn 8982  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-z 9318
This theorem is referenced by:  nnssz  9334  elnnz1  9340  znnsub  9368  nn0ge0div  9404  msqznn  9417  elpq  9714  elfz1b  10156  lbfzo0  10248  fzo1fzo0n0  10250  elfzo0z  10251  fzofzim  10255  elfzodifsumelfzo  10268  exp3val  10612  nnesq  10730  nnabscl  11244  cvgratnnlemabsle  11670  p1modz1  11937  nndivdvds  11939  zdvdsdc  11955  oddge22np1  12022  evennn2n  12024  nno  12047  nnoddm1d2  12051  divalglemex  12063  divalglemeuneg  12064  divalg  12065  ndvdsadd  12072  sqgcd  12166  qredeu  12235  prmind2  12258  sqrt2irrlem  12299  sqrt2irrap  12318  qgt0numnn  12337  oddprm  12397  pythagtriplem6  12408  pythagtriplem11  12412  pythagtriplem13  12414  pythagtriplem19  12420  pc2dvds  12468  pcadd  12478  4sqlem11  12539  4sqlem12  12540  mulgval  13192  mulgfng  13194  subgmulg  13258  znidomb  14146  gausslemma2dlem1a  15174  lgseisenlem1  15186  lgsquadlem1  15191  2sqlem8  15210
  Copyright terms: Public domain W3C validator