| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zapne | GIF version | ||
| Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zapne | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9447 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9447 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | apne 8766 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) |
| 5 | df-ne 2401 | . . 3 ⊢ (𝑀 ≠ 𝑁 ↔ ¬ 𝑀 = 𝑁) | |
| 6 | ztri3or 9485 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
| 7 | 3orrot 1008 | . . . . . . 7 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 8 | 3orass 1005 | . . . . . . 7 ⊢ ((𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) | |
| 9 | 7, 8 | bitri 184 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 10 | 6, 9 | sylib 122 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 11 | 10 | ord 729 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 12 | zre 9446 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 13 | zre 9446 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | reaplt 8731 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑁 < 𝑀))) | |
| 15 | orcom 733 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 16 | 14, 15 | bitrdi 196 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 17 | 12, 13, 16 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 18 | 11, 17 | sylibrd 169 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → 𝑀 # 𝑁)) |
| 19 | 5, 18 | biimtrid 152 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 𝑁 → 𝑀 # 𝑁)) |
| 20 | 4, 19 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 ℂcc 7993 ℝcr 7994 < clt 8177 # cap 8724 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: zltlen 9521 msqznn 9543 qapne 9830 qreccl 9833 seqf1oglem1 10736 nn0opthd 10939 fihashneq0 11011 nnabscl 11606 eftcl 12160 dvdsval2 12296 dvdscmulr 12326 dvdsmulcr 12327 fsumdvds 12348 divconjdvds 12355 gcdn0gt0 12494 lcmcllem 12584 lcmid 12597 3lcm2e6woprm 12603 6lcm4e12 12604 mulgcddvds 12611 divgcdcoprmex 12619 cncongr1 12620 cncongr2 12621 isprm3 12635 pcpremul 12811 pceu 12813 pcmul 12819 pcdiv 12820 pcqmul 12821 dvdsprmpweqle 12855 qexpz 12870 4sqlem11 12919 relogbval 15619 relogbzcl 15620 nnlogbexp 15627 logbgcd1irraplemexp 15636 lgslem1 15673 lgsdilem2 15709 lgsdi 15710 lgsne0 15711 lgseisen 15747 |
| Copyright terms: Public domain | W3C validator |