| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zapne | GIF version | ||
| Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zapne | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9407 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9407 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | apne 8726 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) |
| 5 | df-ne 2378 | . . 3 ⊢ (𝑀 ≠ 𝑁 ↔ ¬ 𝑀 = 𝑁) | |
| 6 | ztri3or 9445 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
| 7 | 3orrot 987 | . . . . . . 7 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 8 | 3orass 984 | . . . . . . 7 ⊢ ((𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) | |
| 9 | 7, 8 | bitri 184 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 10 | 6, 9 | sylib 122 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 11 | 10 | ord 726 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 12 | zre 9406 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 13 | zre 9406 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | reaplt 8691 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑁 < 𝑀))) | |
| 15 | orcom 730 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 16 | 14, 15 | bitrdi 196 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 17 | 12, 13, 16 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 18 | 11, 17 | sylibrd 169 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → 𝑀 # 𝑁)) |
| 19 | 5, 18 | biimtrid 152 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 𝑁 → 𝑀 # 𝑁)) |
| 20 | 4, 19 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4054 ℂcc 7953 ℝcr 7954 < clt 8137 # cap 8684 ℤcz 9402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-inn 9067 df-n0 9326 df-z 9403 |
| This theorem is referenced by: zltlen 9481 msqznn 9503 qapne 9790 qreccl 9793 seqf1oglem1 10696 nn0opthd 10899 fihashneq0 10971 nnabscl 11496 eftcl 12050 dvdsval2 12186 dvdscmulr 12216 dvdsmulcr 12217 fsumdvds 12238 divconjdvds 12245 gcdn0gt0 12384 lcmcllem 12474 lcmid 12487 3lcm2e6woprm 12493 6lcm4e12 12494 mulgcddvds 12501 divgcdcoprmex 12509 cncongr1 12510 cncongr2 12511 isprm3 12525 pcpremul 12701 pceu 12703 pcmul 12709 pcdiv 12710 pcqmul 12711 dvdsprmpweqle 12745 qexpz 12760 4sqlem11 12809 relogbval 15508 relogbzcl 15509 nnlogbexp 15516 logbgcd1irraplemexp 15525 lgslem1 15562 lgsdilem2 15598 lgsdi 15599 lgsne0 15600 lgseisen 15636 |
| Copyright terms: Public domain | W3C validator |