| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zapne | GIF version | ||
| Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zapne | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9331 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9331 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | apne 8650 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) |
| 5 | df-ne 2368 | . . 3 ⊢ (𝑀 ≠ 𝑁 ↔ ¬ 𝑀 = 𝑁) | |
| 6 | ztri3or 9369 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
| 7 | 3orrot 986 | . . . . . . 7 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 8 | 3orass 983 | . . . . . . 7 ⊢ ((𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) | |
| 9 | 7, 8 | bitri 184 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 10 | 6, 9 | sylib 122 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 11 | 10 | ord 725 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 12 | zre 9330 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 13 | zre 9330 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | reaplt 8615 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑁 < 𝑀))) | |
| 15 | orcom 729 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 16 | 14, 15 | bitrdi 196 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 17 | 12, 13, 16 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 18 | 11, 17 | sylibrd 169 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → 𝑀 # 𝑁)) |
| 19 | 5, 18 | biimtrid 152 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 𝑁 → 𝑀 # 𝑁)) |
| 20 | 4, 19 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4033 ℂcc 7877 ℝcr 7878 < clt 8061 # cap 8608 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: zltlen 9404 msqznn 9426 qapne 9713 qreccl 9716 seqf1oglem1 10611 nn0opthd 10814 fihashneq0 10886 nnabscl 11265 eftcl 11819 dvdsval2 11955 dvdscmulr 11985 dvdsmulcr 11986 fsumdvds 12007 divconjdvds 12014 gcdn0gt0 12145 lcmcllem 12235 lcmid 12248 3lcm2e6woprm 12254 6lcm4e12 12255 mulgcddvds 12262 divgcdcoprmex 12270 cncongr1 12271 cncongr2 12272 isprm3 12286 pcpremul 12462 pceu 12464 pcmul 12470 pcdiv 12471 pcqmul 12472 dvdsprmpweqle 12506 qexpz 12521 4sqlem11 12570 relogbval 15187 relogbzcl 15188 nnlogbexp 15195 logbgcd1irraplemexp 15204 lgslem1 15241 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 lgseisen 15315 |
| Copyright terms: Public domain | W3C validator |