ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zapne GIF version

Theorem zapne 9329
Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zapne ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))

Proof of Theorem zapne
StepHypRef Expression
1 zcn 9260 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9260 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 apne 8582 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁𝑀𝑁))
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
5 df-ne 2348 . . 3 (𝑀𝑁 ↔ ¬ 𝑀 = 𝑁)
6 ztri3or 9298 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
7 3orrot 984 . . . . . . 7 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ (𝑀 = 𝑁𝑁 < 𝑀𝑀 < 𝑁))
8 3orass 981 . . . . . . 7 ((𝑀 = 𝑁𝑁 < 𝑀𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
97, 8bitri 184 . . . . . 6 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
106, 9sylib 122 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
1110ord 724 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀𝑀 < 𝑁)))
12 zre 9259 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
13 zre 9259 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 reaplt 8547 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁𝑁 < 𝑀)))
15 orcom 728 . . . . . 6 ((𝑀 < 𝑁𝑁 < 𝑀) ↔ (𝑁 < 𝑀𝑀 < 𝑁))
1614, 15bitrdi 196 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀𝑀 < 𝑁)))
1712, 13, 16syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀𝑀 < 𝑁)))
1811, 17sylibrd 169 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁𝑀 # 𝑁))
195, 18biimtrid 152 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 # 𝑁))
204, 19impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4005  cc 7811  cr 7812   < clt 7994   # cap 8540  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  zltlen  9333  msqznn  9355  qapne  9641  qreccl  9644  nn0opthd  10704  fihashneq0  10776  nnabscl  11111  eftcl  11664  dvdsval2  11799  dvdscmulr  11829  dvdsmulcr  11830  divconjdvds  11857  gcdn0gt0  11981  lcmcllem  12069  lcmid  12082  3lcm2e6woprm  12088  6lcm4e12  12089  mulgcddvds  12096  divgcdcoprmex  12104  cncongr1  12105  cncongr2  12106  isprm3  12120  pcpremul  12295  pceu  12297  pcmul  12303  pcdiv  12304  pcqmul  12305  dvdsprmpweqle  12338  qexpz  12352  relogbval  14454  relogbzcl  14455  nnlogbexp  14462  logbgcd1irraplemexp  14471  lgslem1  14486  lgsdilem2  14522  lgsdi  14523  lgsne0  14524
  Copyright terms: Public domain W3C validator