ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zapne GIF version

Theorem zapne 9446
Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zapne ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))

Proof of Theorem zapne
StepHypRef Expression
1 zcn 9376 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9376 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 apne 8695 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁𝑀𝑁))
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
5 df-ne 2376 . . 3 (𝑀𝑁 ↔ ¬ 𝑀 = 𝑁)
6 ztri3or 9414 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
7 3orrot 986 . . . . . . 7 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ (𝑀 = 𝑁𝑁 < 𝑀𝑀 < 𝑁))
8 3orass 983 . . . . . . 7 ((𝑀 = 𝑁𝑁 < 𝑀𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
97, 8bitri 184 . . . . . 6 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
106, 9sylib 122 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀𝑀 < 𝑁)))
1110ord 725 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀𝑀 < 𝑁)))
12 zre 9375 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
13 zre 9375 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 reaplt 8660 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁𝑁 < 𝑀)))
15 orcom 729 . . . . . 6 ((𝑀 < 𝑁𝑁 < 𝑀) ↔ (𝑁 < 𝑀𝑀 < 𝑁))
1614, 15bitrdi 196 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀𝑀 < 𝑁)))
1712, 13, 16syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀𝑀 < 𝑁)))
1811, 17sylibrd 169 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁𝑀 # 𝑁))
195, 18biimtrid 152 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 # 𝑁))
204, 19impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  cc 7922  cr 7923   < clt 8106   # cap 8653  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-inn 9036  df-n0 9295  df-z 9372
This theorem is referenced by:  zltlen  9450  msqznn  9472  qapne  9759  qreccl  9762  seqf1oglem1  10662  nn0opthd  10865  fihashneq0  10937  nnabscl  11382  eftcl  11936  dvdsval2  12072  dvdscmulr  12102  dvdsmulcr  12103  fsumdvds  12124  divconjdvds  12131  gcdn0gt0  12270  lcmcllem  12360  lcmid  12373  3lcm2e6woprm  12379  6lcm4e12  12380  mulgcddvds  12387  divgcdcoprmex  12395  cncongr1  12396  cncongr2  12397  isprm3  12411  pcpremul  12587  pceu  12589  pcmul  12595  pcdiv  12596  pcqmul  12597  dvdsprmpweqle  12631  qexpz  12646  4sqlem11  12695  relogbval  15394  relogbzcl  15395  nnlogbexp  15402  logbgcd1irraplemexp  15411  lgslem1  15448  lgsdilem2  15484  lgsdi  15485  lgsne0  15486  lgseisen  15522
  Copyright terms: Public domain W3C validator