| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zapne | GIF version | ||
| Description: Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zapne | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9376 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9376 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | apne 8695 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 → 𝑀 ≠ 𝑁)) |
| 5 | df-ne 2376 | . . 3 ⊢ (𝑀 ≠ 𝑁 ↔ ¬ 𝑀 = 𝑁) | |
| 6 | ztri3or 9414 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
| 7 | 3orrot 986 | . . . . . . 7 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 8 | 3orass 983 | . . . . . . 7 ⊢ ((𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ∨ 𝑀 < 𝑁) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) | |
| 9 | 7, 8 | bitri 184 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 10 | 6, 9 | sylib 122 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ∨ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 11 | 10 | ord 725 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 12 | zre 9375 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 13 | zre 9375 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 14 | reaplt 8660 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑁 < 𝑀))) | |
| 15 | orcom 729 | . . . . . 6 ⊢ ((𝑀 < 𝑁 ∨ 𝑁 < 𝑀) ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁)) | |
| 16 | 14, 15 | bitrdi 196 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 17 | 12, 13, 16 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ (𝑁 < 𝑀 ∨ 𝑀 < 𝑁))) |
| 18 | 11, 17 | sylibrd 169 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 = 𝑁 → 𝑀 # 𝑁)) |
| 19 | 5, 18 | biimtrid 152 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 𝑁 → 𝑀 # 𝑁)) |
| 20 | 4, 19 | impbid 129 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁 ↔ 𝑀 ≠ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 class class class wbr 4043 ℂcc 7922 ℝcr 7923 < clt 8106 # cap 8653 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-inn 9036 df-n0 9295 df-z 9372 |
| This theorem is referenced by: zltlen 9450 msqznn 9472 qapne 9759 qreccl 9762 seqf1oglem1 10662 nn0opthd 10865 fihashneq0 10937 nnabscl 11382 eftcl 11936 dvdsval2 12072 dvdscmulr 12102 dvdsmulcr 12103 fsumdvds 12124 divconjdvds 12131 gcdn0gt0 12270 lcmcllem 12360 lcmid 12373 3lcm2e6woprm 12379 6lcm4e12 12380 mulgcddvds 12387 divgcdcoprmex 12395 cncongr1 12396 cncongr2 12397 isprm3 12411 pcpremul 12587 pceu 12589 pcmul 12595 pcdiv 12596 pcqmul 12597 dvdsprmpweqle 12631 qexpz 12646 4sqlem11 12695 relogbval 15394 relogbzcl 15395 nnlogbexp 15402 logbgcd1irraplemexp 15411 lgslem1 15448 lgsdilem2 15484 lgsdi 15485 lgsne0 15486 lgseisen 15522 |
| Copyright terms: Public domain | W3C validator |