Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tprot | GIF version |
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orrot 974 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
2 | 1 | abbii 2282 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
3 | dftp2 3625 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
4 | dftp2 3625 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
5 | 2, 3, 4 | 3eqtr4i 2196 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Colors of variables: wff set class |
Syntax hints: ∨ w3o 967 = wceq 1343 {cab 2151 {ctp 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-tp 3584 |
This theorem is referenced by: tpcomb 3671 tpass 3672 tpidm13 3676 tpidm23 3677 prsstp23 3728 fvtp2g 5694 fvtp3g 5695 fvtp2 5697 fvtp3 5698 |
Copyright terms: Public domain | W3C validator |