![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tprot | GIF version |
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
tprot | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orrot 986 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)) | |
2 | 1 | abbii 2309 | . 2 ⊢ {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} |
3 | dftp2 3667 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
4 | dftp2 3667 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ∨ 𝑥 = 𝐴)} | |
5 | 2, 3, 4 | 3eqtr4i 2224 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
Colors of variables: wff set class |
Syntax hints: ∨ w3o 979 = wceq 1364 {cab 2179 {ctp 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-tp 3626 |
This theorem is referenced by: tpcomb 3713 tpass 3714 tpidm13 3718 tpidm23 3719 prsstp23 3773 fvtp2g 5767 fvtp3g 5768 fvtp2 5770 fvtp3 5771 |
Copyright terms: Public domain | W3C validator |