ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4syl GIF version

Theorem 4syl 18
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
4syl.1 (𝜑𝜓)
4syl.2 (𝜓𝜒)
4syl.3 (𝜒𝜃)
4syl.4 (𝜃𝜏)
Assertion
Ref Expression
4syl (𝜑𝜏)

Proof of Theorem 4syl
StepHypRef Expression
1 4syl.1 . . 3 (𝜑𝜓)
2 4syl.2 . . 3 (𝜓𝜒)
3 4syl.3 . . 3 (𝜒𝜃)
41, 2, 33syl 17 . 2 (𝜑𝜃)
5 4syl.4 . 2 (𝜃𝜏)
64, 5syl 14 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  f1ocnvfvrneq  5912  fcof1o  5919  isoselem  5950  isose  5951  tposss  6398  smoiso  6454  fzssp1  10271  fzosplitsnm1  10423  fzofzp1  10441  fzostep1  10451  bcm1k  10990  pfxccatpfx2  11277  climuni  11812  serf0  11871  fsumparts  11989  hashiun  11997  oddprm  12790  znzrh2  14618  znf1o  14623  znidom  14629  hmeores  14997  gausslemma2dlem0c  15738  gausslemma2dlem0e  15740  gausslemma2dlem1a  15745
  Copyright terms: Public domain W3C validator