![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4syl | GIF version |
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
4syl.1 | ⊢ (𝜑 → 𝜓) |
4syl.2 | ⊢ (𝜓 → 𝜒) |
4syl.3 | ⊢ (𝜒 → 𝜃) |
4syl.4 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
4syl | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: f1ocnvfvrneq 5785 fcof1o 5792 isoselem 5823 isose 5824 tposss 6249 smoiso 6305 fzssp1 10069 fzosplitsnm1 10211 fzofzp1 10229 fzostep1 10239 bcm1k 10742 climuni 11303 serf0 11362 fsumparts 11480 hashiun 11488 oddprm 12261 hmeores 13900 |
Copyright terms: Public domain | W3C validator |