Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4syl | GIF version |
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
4syl.1 | ⊢ (𝜑 → 𝜓) |
4syl.2 | ⊢ (𝜓 → 𝜒) |
4syl.3 | ⊢ (𝜒 → 𝜃) |
4syl.4 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
4syl | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: f1ocnvfvrneq 5750 fcof1o 5757 isoselem 5788 isose 5789 tposss 6214 smoiso 6270 fzssp1 10002 fzosplitsnm1 10144 fzofzp1 10162 fzostep1 10172 bcm1k 10673 climuni 11234 serf0 11293 fsumparts 11411 hashiun 11419 oddprm 12191 hmeores 12955 |
Copyright terms: Public domain | W3C validator |