ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4syl GIF version

Theorem 4syl 18
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
4syl.1 (𝜑𝜓)
4syl.2 (𝜓𝜒)
4syl.3 (𝜒𝜃)
4syl.4 (𝜃𝜏)
Assertion
Ref Expression
4syl (𝜑𝜏)

Proof of Theorem 4syl
StepHypRef Expression
1 4syl.1 . . 3 (𝜑𝜓)
2 4syl.2 . . 3 (𝜓𝜒)
3 4syl.3 . . 3 (𝜒𝜃)
41, 2, 33syl 17 . 2 (𝜑𝜃)
5 4syl.4 . 2 (𝜃𝜏)
64, 5syl 14 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  f1ocnvfvrneq  5615  fcof1o  5622  isoselem  5653  isose  5654  tposss  6073  smoiso  6129  fzssp1  9688  fzosplitsnm1  9827  fzofzp1  9845  fzostep1  9855  bcm1k  10347  climuni  10901  serf0  10960  fsumparts  11078  hashiun  11086
  Copyright terms: Public domain W3C validator