| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4syl | GIF version | ||
| Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 4syl.1 | ⊢ (𝜑 → 𝜓) |
| 4syl.2 | ⊢ (𝜓 → 𝜒) |
| 4syl.3 | ⊢ (𝜒 → 𝜃) |
| 4syl.4 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| 4syl | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
| 5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: f1ocnvfvrneq 5832 fcof1o 5839 isoselem 5870 isose 5871 tposss 6313 smoiso 6369 fzssp1 10159 fzosplitsnm1 10302 fzofzp1 10320 fzostep1 10330 bcm1k 10869 climuni 11475 serf0 11534 fsumparts 11652 hashiun 11660 oddprm 12453 znzrh2 14278 znf1o 14283 znidom 14289 hmeores 14635 gausslemma2dlem0c 15376 gausslemma2dlem0e 15378 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |