ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4syl GIF version

Theorem 4syl 18
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
4syl.1 (𝜑𝜓)
4syl.2 (𝜓𝜒)
4syl.3 (𝜒𝜃)
4syl.4 (𝜃𝜏)
Assertion
Ref Expression
4syl (𝜑𝜏)

Proof of Theorem 4syl
StepHypRef Expression
1 4syl.1 . . 3 (𝜑𝜓)
2 4syl.2 . . 3 (𝜓𝜒)
3 4syl.3 . . 3 (𝜒𝜃)
41, 2, 33syl 17 . 2 (𝜑𝜃)
5 4syl.4 . 2 (𝜃𝜏)
64, 5syl 14 1 (𝜑𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  f1ocnvfvrneq  5861  fcof1o  5868  isoselem  5899  isose  5900  tposss  6342  smoiso  6398  fzssp1  10202  fzosplitsnm1  10351  fzofzp1  10369  fzostep1  10379  bcm1k  10918  climuni  11654  serf0  11713  fsumparts  11831  hashiun  11839  oddprm  12632  znzrh2  14458  znf1o  14463  znidom  14469  hmeores  14837  gausslemma2dlem0c  15578  gausslemma2dlem0e  15580  gausslemma2dlem1a  15585
  Copyright terms: Public domain W3C validator