| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4syl | GIF version | ||
| Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 4syl.1 | ⊢ (𝜑 → 𝜓) |
| 4syl.2 | ⊢ (𝜓 → 𝜒) |
| 4syl.3 | ⊢ (𝜒 → 𝜃) |
| 4syl.4 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| 4syl | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
| 5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: f1ocnvfvrneq 5912 fcof1o 5919 isoselem 5950 isose 5951 tposss 6398 smoiso 6454 fzssp1 10271 fzosplitsnm1 10423 fzofzp1 10441 fzostep1 10451 bcm1k 10990 pfxccatpfx2 11277 climuni 11812 serf0 11871 fsumparts 11989 hashiun 11997 oddprm 12790 znzrh2 14618 znf1o 14623 znidom 14629 hmeores 14997 gausslemma2dlem0c 15738 gausslemma2dlem0e 15740 gausslemma2dlem1a 15745 |
| Copyright terms: Public domain | W3C validator |