| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4syl | GIF version | ||
| Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 4syl.1 | ⊢ (𝜑 → 𝜓) |
| 4syl.2 | ⊢ (𝜓 → 𝜒) |
| 4syl.3 | ⊢ (𝜒 → 𝜃) |
| 4syl.4 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| 4syl | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
| 5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: f1ocnvfvrneq 5861 fcof1o 5868 isoselem 5899 isose 5900 tposss 6342 smoiso 6398 fzssp1 10202 fzosplitsnm1 10351 fzofzp1 10369 fzostep1 10379 bcm1k 10918 climuni 11654 serf0 11713 fsumparts 11831 hashiun 11839 oddprm 12632 znzrh2 14458 znf1o 14463 znidom 14469 hmeores 14837 gausslemma2dlem0c 15578 gausslemma2dlem0e 15580 gausslemma2dlem1a 15585 |
| Copyright terms: Public domain | W3C validator |