Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4syl | GIF version |
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
4syl.1 | ⊢ (𝜑 → 𝜓) |
4syl.2 | ⊢ (𝜓 → 𝜒) |
4syl.3 | ⊢ (𝜒 → 𝜃) |
4syl.4 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
4syl | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: f1ocnvfvrneq 5761 fcof1o 5768 isoselem 5799 isose 5800 tposss 6225 smoiso 6281 fzssp1 10023 fzosplitsnm1 10165 fzofzp1 10183 fzostep1 10193 bcm1k 10694 climuni 11256 serf0 11315 fsumparts 11433 hashiun 11441 oddprm 12213 hmeores 13109 |
Copyright terms: Public domain | W3C validator |