![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4syl | GIF version |
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
4syl.1 | ⊢ (𝜑 → 𝜓) |
4syl.2 | ⊢ (𝜓 → 𝜒) |
4syl.3 | ⊢ (𝜒 → 𝜃) |
4syl.4 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
4syl | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: f1ocnvfvrneq 5826 fcof1o 5833 isoselem 5864 isose 5865 tposss 6301 smoiso 6357 fzssp1 10136 fzosplitsnm1 10279 fzofzp1 10297 fzostep1 10307 bcm1k 10834 climuni 11439 serf0 11498 fsumparts 11616 hashiun 11624 oddprm 12400 znzrh2 14145 znf1o 14150 znidom 14156 hmeores 14494 gausslemma2dlem0c 15208 gausslemma2dlem0e 15210 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |