| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4syl | GIF version | ||
| Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 4syl.1 | ⊢ (𝜑 → 𝜓) |
| 4syl.2 | ⊢ (𝜓 → 𝜒) |
| 4syl.3 | ⊢ (𝜒 → 𝜃) |
| 4syl.4 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| 4syl | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 4syl.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 4syl.3 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝜑 → 𝜃) |
| 5 | 4syl.4 | . 2 ⊢ (𝜃 → 𝜏) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: f1ocnvfvrneq 5899 fcof1o 5906 isoselem 5937 isose 5938 tposss 6382 smoiso 6438 fzssp1 10251 fzosplitsnm1 10402 fzofzp1 10420 fzostep1 10430 bcm1k 10969 pfxccatpfx2 11255 climuni 11790 serf0 11849 fsumparts 11967 hashiun 11975 oddprm 12768 znzrh2 14595 znf1o 14600 znidom 14606 hmeores 14974 gausslemma2dlem0c 15715 gausslemma2dlem0e 15717 gausslemma2dlem1a 15722 |
| Copyright terms: Public domain | W3C validator |