Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeores GIF version

Theorem hmeores 12498
 Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
hmeores.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeores ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))

Proof of Theorem hmeores
StepHypRef Expression
1 hmeocn 12488 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 274 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 hmeores.1 . . . . 5 𝑋 = 𝐽
43cnrest 12418 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
52, 4sylancom 416 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾))
6 cntop2 12385 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
72, 6syl 14 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ Top)
8 eqid 2139 . . . . . 6 𝐾 = 𝐾
98toptopon 12199 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
107, 9sylib 121 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘ 𝐾))
11 df-ima 4552 . . . . . 6 (𝐹𝑌) = ran (𝐹𝑌)
1211eqimss2i 3154 . . . . 5 ran (𝐹𝑌) ⊆ (𝐹𝑌)
1312a1i 9 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ (𝐹𝑌))
14 imassrn 4892 . . . . 5 (𝐹𝑌) ⊆ ran 𝐹
153, 8cnf 12387 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
162, 15syl 14 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹:𝑋 𝐾)
1716frnd 5282 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran 𝐹 𝐾)
1814, 17sstrid 3108 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ⊆ 𝐾)
19 cnrest2 12419 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝑌) ⊆ (𝐹𝑌) ∧ (𝐹𝑌) ⊆ 𝐾) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
2010, 13, 18, 19syl3anc 1216 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn 𝐾) ↔ (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌)))))
215, 20mpbid 146 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))))
22 hmeocnvcn 12489 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2322adantr 274 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐹 ∈ (𝐾 Cn 𝐽))
248, 3cnf 12387 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐽) → 𝐹: 𝐾𝑋)
25 ffun 5275 . . . . 5 (𝐹: 𝐾𝑋 → Fun 𝐹)
26 funcnvres 5196 . . . . 5 (Fun 𝐹(𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
2723, 24, 25, 264syl 18 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) = (𝐹 ↾ (𝐹𝑌)))
288cnrest 12418 . . . . 5 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ (𝐹𝑌) ⊆ 𝐾) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
2923, 18, 28syl2anc 408 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹 ↾ (𝐹𝑌)) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
3027, 29eqeltrd 2216 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽))
31 cntop1 12384 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
322, 31syl 14 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ Top)
333toptopon 12199 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3432, 33sylib 121 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
35 dfdm4 4731 . . . . . 6 dom (𝐹𝑌) = ran (𝐹𝑌)
36 fssres 5298 . . . . . . . 8 ((𝐹:𝑋 𝐾𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
3716, 36sylancom 416 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌):𝑌 𝐾)
3837fdmd 5279 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → dom (𝐹𝑌) = 𝑌)
3935, 38syl5eqr 2186 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) = 𝑌)
40 eqimss 3151 . . . . 5 (ran (𝐹𝑌) = 𝑌 → ran (𝐹𝑌) ⊆ 𝑌)
4139, 40syl 14 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ran (𝐹𝑌) ⊆ 𝑌)
42 simpr 109 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → 𝑌𝑋)
43 cnrest2 12419 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ ran (𝐹𝑌) ⊆ 𝑌𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4434, 41, 42, 43syl3anc 1216 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → ((𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn 𝐽) ↔ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4530, 44mpbid 146 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌)))
46 ishmeo 12487 . 2 ((𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))) ↔ ((𝐹𝑌) ∈ ((𝐽t 𝑌) Cn (𝐾t (𝐹𝑌))) ∧ (𝐹𝑌) ∈ ((𝐾t (𝐹𝑌)) Cn (𝐽t 𝑌))))
4721, 45, 46sylanbrc 413 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   ⊆ wss 3071  ∪ cuni 3736  ◡ccnv 4538  dom cdm 4539  ran crn 4540   ↾ cres 4541   “ cima 4542  Fun wfun 5117  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774   ↾t crest 12134  Topctop 12178  TopOnctopon 12191   Cn ccn 12368  Homeochmeo 12483 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-rest 12136  df-topgen 12155  df-top 12179  df-topon 12192  df-bases 12224  df-cn 12371  df-hmeo 12484 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator