Proof of Theorem hmeores
| Step | Hyp | Ref
| Expression |
| 1 | | hmeocn 14541 |
. . . . 5
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 2 | 1 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 3 | | hmeores.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 4 | 3 | cnrest 14471 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 5 | 2, 4 | sylancom 420 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾)) |
| 6 | | cntop2 14438 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| 7 | 2, 6 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
| 8 | | eqid 2196 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 9 | 8 | toptopon 14254 |
. . . . 5
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 10 | 7, 9 | sylib 122 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 11 | | df-ima 4676 |
. . . . . 6
⊢ (𝐹 “ 𝑌) = ran (𝐹 ↾ 𝑌) |
| 12 | 11 | eqimss2i 3240 |
. . . . 5
⊢ ran
(𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌) |
| 13 | 12 | a1i 9 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran (𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌)) |
| 14 | | imassrn 5020 |
. . . . 5
⊢ (𝐹 “ 𝑌) ⊆ ran 𝐹 |
| 15 | 3, 8 | cnf 14440 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 16 | 2, 15 | syl 14 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
| 17 | 16 | frnd 5417 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran 𝐹 ⊆ ∪ 𝐾) |
| 18 | 14, 17 | sstrid 3194 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 “ 𝑌) ⊆ ∪ 𝐾) |
| 19 | | cnrest2 14472 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ ran (𝐹 ↾ 𝑌) ⊆ (𝐹 “ 𝑌) ∧ (𝐹 “ 𝑌) ⊆ ∪ 𝐾) → ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾) ↔ (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))))) |
| 20 | 10, 13, 18, 19 | syl3anc 1249 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn 𝐾) ↔ (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))))) |
| 21 | 5, 20 | mpbid 147 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌)))) |
| 22 | | hmeocnvcn 14542 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| 23 | 22 | adantr 276 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| 24 | 8, 3 | cnf 14440 |
. . . . 5
⊢ (◡𝐹 ∈ (𝐾 Cn 𝐽) → ◡𝐹:∪ 𝐾⟶𝑋) |
| 25 | | ffun 5410 |
. . . . 5
⊢ (◡𝐹:∪ 𝐾⟶𝑋 → Fun ◡𝐹) |
| 26 | | funcnvres 5331 |
. . . . 5
⊢ (Fun
◡𝐹 → ◡(𝐹 ↾ 𝑌) = (◡𝐹 ↾ (𝐹 “ 𝑌))) |
| 27 | 23, 24, 25, 26 | 4syl 18 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) = (◡𝐹 ↾ (𝐹 “ 𝑌))) |
| 28 | 8 | cnrest 14471 |
. . . . 5
⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ (𝐹 “ 𝑌) ⊆ ∪ 𝐾) → (◡𝐹 ↾ (𝐹 “ 𝑌)) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 29 | 23, 18, 28 | syl2anc 411 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (◡𝐹 ↾ (𝐹 “ 𝑌)) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 30 | 27, 29 | eqeltrd 2273 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽)) |
| 31 | | cntop1 14437 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| 32 | 2, 31 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 33 | 3 | toptopon 14254 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 34 | 32, 33 | sylib 122 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 35 | | dfdm4 4858 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝑌) = ran ◡(𝐹 ↾ 𝑌) |
| 36 | | fssres 5433 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶∪ 𝐾 ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌):𝑌⟶∪ 𝐾) |
| 37 | 16, 36 | sylancom 420 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌):𝑌⟶∪ 𝐾) |
| 38 | 37 | fdmd 5414 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → dom (𝐹 ↾ 𝑌) = 𝑌) |
| 39 | 35, 38 | eqtr3id 2243 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran ◡(𝐹 ↾ 𝑌) = 𝑌) |
| 40 | | eqimss 3237 |
. . . . 5
⊢ (ran
◡(𝐹 ↾ 𝑌) = 𝑌 → ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌) |
| 41 | 39, 40 | syl 14 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌) |
| 42 | | simpr 110 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → 𝑌 ⊆ 𝑋) |
| 43 | | cnrest2 14472 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ran ◡(𝐹 ↾ 𝑌) ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋) → (◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽) ↔ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 44 | 34, 41, 42, 43 | syl3anc 1249 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn 𝐽) ↔ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 45 | 30, 44 | mpbid 147 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌))) |
| 46 | | ishmeo 14540 |
. 2
⊢ ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌))) ↔ ((𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌) Cn (𝐾 ↾t (𝐹 “ 𝑌))) ∧ ◡(𝐹 ↾ 𝑌) ∈ ((𝐾 ↾t (𝐹 “ 𝑌)) Cn (𝐽 ↾t 𝑌)))) |
| 47 | 21, 45, 46 | sylanbrc 417 |
1
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌 ⊆ 𝑋) → (𝐹 ↾ 𝑌) ∈ ((𝐽 ↾t 𝑌)Homeo(𝐾 ↾t (𝐹 “ 𝑌)))) |