Proof of Theorem fcof1o
Step | Hyp | Ref
| Expression |
1 | | fcof1 5762 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) |
2 | 1 | ad2ant2rl 508 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–1-1→𝐵) |
3 | | fcofo 5763 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
4 | 3 | 3expa 1198 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
5 | 4 | adantrr 476 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–onto→𝐵) |
6 | | df-f1o 5205 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
7 | 2, 5, 6 | sylanbrc 415 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–1-1-onto→𝐵) |
8 | | simprl 526 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
9 | 8 | coeq2d 4773 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ 𝐵))) |
10 | | coass 5129 |
. . . 4
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) |
11 | | f1ococnv1 5471 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
12 | 7, 11 | syl 14 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
13 | 12 | coeq1d 4772 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
14 | | fcoi2 5379 |
. . . . . 6
⊢ (𝐺:𝐵⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
15 | 14 | ad2antlr 486 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
16 | 13, 15 | eqtrd 2203 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
17 | 10, 16 | eqtr3id 2217 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
18 | | f1ocnv 5455 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
19 | | f1of 5442 |
. . . 4
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
20 | | fcoi1 5378 |
. . . 4
⊢ (◡𝐹:𝐵⟶𝐴 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
21 | 7, 18, 19, 20 | 4syl 18 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
22 | 9, 17, 21 | 3eqtr3rd 2212 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ◡𝐹 = 𝐺) |
23 | 7, 22 | jca 304 |
1
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = 𝐺)) |