ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o GIF version

Theorem fcof1o 5858
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5852 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐺𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
21ad2ant2rl 511 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1𝐵)
3 fcofo 5853 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐵𝐴 ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
433expa 1206 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
54adantrr 479 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴onto𝐵)
6 df-f1o 5278 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
72, 5, 6sylanbrc 417 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1-onto𝐵)
8 simprl 529 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐺) = ( I ↾ 𝐵))
98coeq2d 4840 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
10 coass 5201 . . . 4 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 f1ococnv1 5551 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
127, 11syl 14 . . . . . 6 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐹) = ( I ↾ 𝐴))
1312coeq1d 4839 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
14 fcoi2 5457 . . . . . 6 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1514ad2antlr 489 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1613, 15eqtrd 2238 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
1710, 16eqtr3id 2252 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
18 f1ocnv 5535 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
19 f1of 5522 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
20 fcoi1 5456 . . . 4 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
217, 18, 19, 204syl 18 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
229, 17, 213eqtr3rd 2247 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹 = 𝐺)
237, 22jca 306 1 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373   I cid 4335  ccnv 4674  cres 4677  ccom 4679  wf 5267  1-1wf1 5268  ontowfo 5269  1-1-ontowf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  txswaphmeo  14793
  Copyright terms: Public domain W3C validator