ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o GIF version

Theorem fcof1o 5768
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5762 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐺𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
21ad2ant2rl 508 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1𝐵)
3 fcofo 5763 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐵𝐴 ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
433expa 1198 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
54adantrr 476 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴onto𝐵)
6 df-f1o 5205 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
72, 5, 6sylanbrc 415 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1-onto𝐵)
8 simprl 526 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐺) = ( I ↾ 𝐵))
98coeq2d 4773 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
10 coass 5129 . . . 4 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 f1ococnv1 5471 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
127, 11syl 14 . . . . . 6 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐹) = ( I ↾ 𝐴))
1312coeq1d 4772 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
14 fcoi2 5379 . . . . . 6 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1514ad2antlr 486 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1613, 15eqtrd 2203 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
1710, 16eqtr3id 2217 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
18 f1ocnv 5455 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
19 f1of 5442 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
20 fcoi1 5378 . . . 4 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
217, 18, 19, 204syl 18 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
229, 17, 213eqtr3rd 2212 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹 = 𝐺)
237, 22jca 304 1 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348   I cid 4273  ccnv 4610  cres 4613  ccom 4615  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  txswaphmeo  13115
  Copyright terms: Public domain W3C validator