ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcof1o GIF version

Theorem fcof1o 5857
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fcof1o (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))

Proof of Theorem fcof1o
StepHypRef Expression
1 fcof1 5851 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐺𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
21ad2ant2rl 511 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1𝐵)
3 fcofo 5852 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐵𝐴 ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
433expa 1205 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
54adantrr 479 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴onto𝐵)
6 df-f1o 5277 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
72, 5, 6sylanbrc 417 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴1-1-onto𝐵)
8 simprl 529 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐺) = ( I ↾ 𝐵))
98coeq2d 4839 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
10 coass 5200 . . . 4 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 f1ococnv1 5550 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
127, 11syl 14 . . . . . 6 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹𝐹) = ( I ↾ 𝐴))
1312coeq1d 4838 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺))
14 fcoi2 5456 . . . . . 6 (𝐺:𝐵𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1514ad2antlr 489 . . . . 5 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺)
1613, 15eqtrd 2237 . . . 4 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → ((𝐹𝐹) ∘ 𝐺) = 𝐺)
1710, 16eqtr3id 2251 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ (𝐹𝐺)) = 𝐺)
18 f1ocnv 5534 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
19 f1of 5521 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
20 fcoi1 5455 . . . 4 (𝐹:𝐵𝐴 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
217, 18, 19, 204syl 18 . . 3 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
229, 17, 213eqtr3rd 2246 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → 𝐹 = 𝐺)
237, 22jca 306 1 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372   I cid 4334  ccnv 4673  cres 4676  ccom 4678  wf 5266  1-1wf1 5267  ontowfo 5268  1-1-ontowf1o 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by:  txswaphmeo  14764
  Copyright terms: Public domain W3C validator