Proof of Theorem fcof1o
| Step | Hyp | Ref
| Expression |
| 1 | | fcof1 5833 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) |
| 2 | 1 | ad2ant2rl 511 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–1-1→𝐵) |
| 3 | | fcofo 5834 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
| 4 | 3 | 3expa 1205 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
| 5 | 4 | adantrr 479 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–onto→𝐵) |
| 6 | | df-f1o 5266 |
. . 3
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
| 7 | 2, 5, 6 | sylanbrc 417 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → 𝐹:𝐴–1-1-onto→𝐵) |
| 8 | | simprl 529 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (𝐹 ∘ 𝐺) = ( I ↾ 𝐵)) |
| 9 | 8 | coeq2d 4829 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = (◡𝐹 ∘ ( I ↾ 𝐵))) |
| 10 | | coass 5189 |
. . . 4
⊢ ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (◡𝐹 ∘ (𝐹 ∘ 𝐺)) |
| 11 | | f1ococnv1 5536 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 12 | 7, 11 | syl 14 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 13 | 12 | coeq1d 4828 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = (( I ↾ 𝐴) ∘ 𝐺)) |
| 14 | | fcoi2 5442 |
. . . . . 6
⊢ (𝐺:𝐵⟶𝐴 → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
| 15 | 14 | ad2antlr 489 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (( I ↾ 𝐴) ∘ 𝐺) = 𝐺) |
| 16 | 13, 15 | eqtrd 2229 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ((◡𝐹 ∘ 𝐹) ∘ 𝐺) = 𝐺) |
| 17 | 10, 16 | eqtr3id 2243 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ (𝐹 ∘ 𝐺)) = 𝐺) |
| 18 | | f1ocnv 5520 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
| 19 | | f1of 5507 |
. . . 4
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
| 20 | | fcoi1 5441 |
. . . 4
⊢ (◡𝐹:𝐵⟶𝐴 → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
| 21 | 7, 18, 19, 20 | 4syl 18 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (◡𝐹 ∘ ( I ↾ 𝐵)) = ◡𝐹) |
| 22 | 9, 17, 21 | 3eqtr3rd 2238 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → ◡𝐹 = 𝐺) |
| 23 | 7, 22 | jca 306 |
1
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((𝐹 ∘ 𝐺) = ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = 𝐺)) |