![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzosplitsnm1 | GIF version |
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
Ref | Expression |
---|---|
fzosplitsnm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9127 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℤ) | |
2 | 1 | zcnd 8968 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℂ) |
3 | 2 | adantl 272 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℂ) |
4 | ax-1cn 7535 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | npcan 7788 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵) | |
6 | 5 | eqcomd 2100 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1)) |
7 | 3, 4, 6 | sylancl 405 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1)) |
8 | 7 | oveq2d 5706 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1))) |
9 | eluzp1m1 9141 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
10 | 1 | adantl 272 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℤ) |
11 | peano2zm 8886 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
12 | uzid 9132 | . . . . 5 ⊢ ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
13 | peano2uz 9170 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
14 | 10, 11, 12, 13 | 4syl 18 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) |
15 | elfzuzb 9583 | . . . 4 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1)))) | |
16 | 9, 14, 15 | sylanbrc 409 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1))) |
17 | fzosplit 9737 | . . 3 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) |
19 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ) |
20 | 19 | adantl 272 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ) |
21 | fzosn 9765 | . . . 4 ⊢ ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) | |
22 | 20, 21 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) |
23 | 22 | uneq2d 3169 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
24 | 8, 18, 23 | 3eqtrd 2131 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∪ cun 3011 {csn 3466 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 1c1 7448 + caddc 7450 − cmin 7750 ℤcz 8848 ℤ≥cuz 9118 ...cfz 9573 ..^cfzo 9702 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 df-fz 9574 df-fzo 9703 |
This theorem is referenced by: elfzonlteqm1 9770 |
Copyright terms: Public domain | W3C validator |