![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzosplitsnm1 | GIF version |
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
Ref | Expression |
---|---|
fzosplitsnm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9604 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℤ) | |
2 | 1 | zcnd 9443 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℂ) |
3 | 2 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℂ) |
4 | ax-1cn 7967 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | npcan 8230 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵) | |
6 | 5 | eqcomd 2199 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1)) |
7 | 3, 4, 6 | sylancl 413 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1)) |
8 | 7 | oveq2d 5935 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1))) |
9 | eluzp1m1 9619 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
10 | 1 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℤ) |
11 | peano2zm 9358 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
12 | uzid 9609 | . . . . 5 ⊢ ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
13 | peano2uz 9651 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
14 | 10, 11, 12, 13 | 4syl 18 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) |
15 | elfzuzb 10088 | . . . 4 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1)))) | |
16 | 9, 14, 15 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1))) |
17 | fzosplit 10247 | . . 3 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) |
19 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ) |
20 | 19 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ) |
21 | fzosn 10275 | . . . 4 ⊢ ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) | |
22 | 20, 21 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) |
23 | 22 | uneq2d 3314 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
24 | 8, 18, 23 | 3eqtrd 2230 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 {csn 3619 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 1c1 7875 + caddc 7877 − cmin 8192 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 ..^cfzo 10211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: elfzonlteqm1 10280 |
Copyright terms: Public domain | W3C validator |