Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzosplitsnm1 | GIF version |
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
Ref | Expression |
---|---|
fzosplitsnm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9496 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℤ) | |
2 | 1 | zcnd 9335 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℂ) |
3 | 2 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℂ) |
4 | ax-1cn 7867 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | npcan 8128 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵) | |
6 | 5 | eqcomd 2176 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1)) |
7 | 3, 4, 6 | sylancl 411 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1)) |
8 | 7 | oveq2d 5869 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1))) |
9 | eluzp1m1 9510 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
10 | 1 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℤ) |
11 | peano2zm 9250 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
12 | uzid 9501 | . . . . 5 ⊢ ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
13 | peano2uz 9542 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
14 | 10, 11, 12, 13 | 4syl 18 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) |
15 | elfzuzb 9975 | . . . 4 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1)))) | |
16 | 9, 14, 15 | sylanbrc 415 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1))) |
17 | fzosplit 10133 | . . 3 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) |
19 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ) |
20 | 19 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ) |
21 | fzosn 10161 | . . . 4 ⊢ ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) | |
22 | 20, 21 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) |
23 | 22 | uneq2d 3281 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
24 | 8, 18, 23 | 3eqtrd 2207 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 1c1 7775 + caddc 7777 − cmin 8090 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: elfzonlteqm1 10166 |
Copyright terms: Public domain | W3C validator |