ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprm GIF version

Theorem oddprm 12453
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 3286 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 prmz 12304 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
31, 2syl 14 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ)
4 eldifsni 3752 . . . . . . 7 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2)
54necomd 2453 . . . . . 6 (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁)
65neneqd 2388 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁)
7 2z 9371 . . . . . . 7 2 ∈ ℤ
8 uzid 9632 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 dvdsprm 12330 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
119, 1, 10sylancr 414 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
126, 11mtbird 674 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
13 1z 9369 . . . . 5 1 ∈ ℤ
14 n2dvds1 12094 . . . . 5 ¬ 2 ∥ 1
15 omoe 12078 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
1613, 14, 15mpanr12 439 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
173, 12, 16syl2anc 411 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1))
18 prmnn 12303 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
19 nnm1nn0 9307 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
201, 18, 193syl 17 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0)
21 nn0z 9363 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
22 evend2 12071 . . . 4 ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2320, 21, 223syl 17 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2417, 23mpbid 147 . 2 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ)
25 prmuz2 12324 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
26 uz2m1nn 9696 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
27 nngt0 9032 . . . 4 ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1))
28 nnre 9014 . . . . 5 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ)
29 2rp 9750 . . . . . 6 2 ∈ ℝ+
3029a1i 9 . . . . 5 ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+)
3128, 30gt0divd 9826 . . . 4 ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2)))
3227, 31mpbid 147 . . 3 ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2))
331, 25, 26, 324syl 18 . 2 (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2))
34 elnnz 9353 . 2 (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2)))
3524, 33, 34sylanbrc 417 1 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cdif 3154  {csn 3623   class class class wbr 4034  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   < clt 8078  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  +crp 9745  cdvds 11969  cprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-prm 12301
This theorem is referenced by:  nnoddn2prm  12454  4sqlem19  12603  lgslem1  15325  lgslem4  15328  lgsval2lem  15335  lgsvalmod  15344  lgsmod  15351  lgsdirprm  15359  lgsne0  15363  gausslemma2dlem4  15389  lgseisenlem1  15395  lgseisenlem2  15396  lgseisenlem4  15398  lgseisen  15399  m1lgs  15410  2lgslem1  15416  2lgslem2  15417
  Copyright terms: Public domain W3C validator