![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oddprm | GIF version |
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
Ref | Expression |
---|---|
oddprm | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3282 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
2 | prmz 12252 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ) |
4 | eldifsni 3748 | . . . . . . 7 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2) | |
5 | 4 | necomd 2450 | . . . . . 6 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁) |
6 | 5 | neneqd 2385 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁) |
7 | 2z 9348 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
8 | uzid 9609 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
10 | dvdsprm 12278 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) | |
11 | 9, 1, 10 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) |
12 | 6, 11 | mtbird 674 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) |
13 | 1z 9346 | . . . . 5 ⊢ 1 ∈ ℤ | |
14 | n2dvds1 12056 | . . . . 5 ⊢ ¬ 2 ∥ 1 | |
15 | omoe 12040 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) | |
16 | 13, 14, 15 | mpanr12 439 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1)) |
17 | 3, 12, 16 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1)) |
18 | prmnn 12251 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
19 | nnm1nn0 9284 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
20 | 1, 18, 19 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0) |
21 | nn0z 9340 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) | |
22 | evend2 12033 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
23 | 20, 21, 22 | 3syl 17 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) |
24 | 17, 23 | mpbid 147 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ) |
25 | prmuz2 12272 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ≥‘2)) | |
26 | uz2m1nn 9673 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
27 | nngt0 9009 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1)) | |
28 | nnre 8991 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ) | |
29 | 2rp 9727 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
30 | 29 | a1i 9 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+) |
31 | 28, 30 | gt0divd 9803 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) |
32 | 27, 31 | mpbid 147 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2)) |
33 | 1, 25, 26, 32 | 4syl 18 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2)) |
34 | elnnz 9330 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
35 | 24, 33, 34 | sylanbrc 417 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∖ cdif 3151 {csn 3619 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 < clt 8056 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 ℝ+crp 9722 ∥ cdvds 11933 ℙcprime 12248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-prm 12249 |
This theorem is referenced by: nnoddn2prm 12401 4sqlem19 12550 lgslem1 15157 lgslem4 15160 lgsval2lem 15167 lgsvalmod 15176 lgsmod 15183 lgsdirprm 15191 lgsne0 15195 gausslemma2dlem4 15221 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem4 15230 lgseisen 15231 m1lgs 15242 2lgslem1 15248 2lgslem2 15249 |
Copyright terms: Public domain | W3C validator |