| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddprm | GIF version | ||
| Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| oddprm | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3294 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
| 2 | prmz 12352 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ) |
| 4 | eldifsni 3761 | . . . . . . 7 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2) | |
| 5 | 4 | necomd 2461 | . . . . . 6 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁) |
| 6 | 5 | neneqd 2396 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁) |
| 7 | 2z 9382 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 8 | uzid 9644 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | dvdsprm 12378 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) | |
| 11 | 9, 1, 10 | sylancr 414 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) |
| 12 | 6, 11 | mtbird 674 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) |
| 13 | 1z 9380 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 14 | n2dvds1 12142 | . . . . 5 ⊢ ¬ 2 ∥ 1 | |
| 15 | omoe 12126 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) | |
| 16 | 13, 14, 15 | mpanr12 439 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1)) |
| 17 | 3, 12, 16 | syl2anc 411 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1)) |
| 18 | prmnn 12351 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 19 | nnm1nn0 9318 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 20 | 1, 18, 19 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0) |
| 21 | nn0z 9374 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) | |
| 22 | evend2 12119 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
| 23 | 20, 21, 22 | 3syl 17 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) |
| 24 | 17, 23 | mpbid 147 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ) |
| 25 | prmuz2 12372 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ≥‘2)) | |
| 26 | uz2m1nn 9708 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 27 | nngt0 9043 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1)) | |
| 28 | nnre 9025 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ) | |
| 29 | 2rp 9762 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 30 | 29 | a1i 9 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+) |
| 31 | 28, 30 | gt0divd 9838 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) |
| 32 | 27, 31 | mpbid 147 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2)) |
| 33 | 1, 25, 26, 32 | 4syl 18 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2)) |
| 34 | elnnz 9364 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
| 35 | 24, 33, 34 | sylanbrc 417 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∖ cdif 3162 {csn 3632 class class class wbr 4043 ‘cfv 5268 (class class class)co 5934 0cc0 7907 1c1 7908 < clt 8089 − cmin 8225 / cdiv 8727 ℕcn 9018 2c2 9069 ℕ0cn0 9277 ℤcz 9354 ℤ≥cuz 9630 ℝ+crp 9757 ∥ cdvds 12017 ℙcprime 12348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-xor 1395 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-1o 6492 df-2o 6493 df-er 6610 df-en 6818 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-dvds 12018 df-prm 12349 |
| This theorem is referenced by: nnoddn2prm 12502 4sqlem19 12651 lgslem1 15395 lgslem4 15398 lgsval2lem 15405 lgsvalmod 15414 lgsmod 15421 lgsdirprm 15429 lgsne0 15433 gausslemma2dlem4 15459 lgseisenlem1 15465 lgseisenlem2 15466 lgseisenlem4 15468 lgseisen 15469 m1lgs 15480 2lgslem1 15486 2lgslem2 15487 |
| Copyright terms: Public domain | W3C validator |