ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprm GIF version

Theorem oddprm 12206
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 3249 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 prmz 12058 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
31, 2syl 14 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ)
4 eldifsni 3710 . . . . . . 7 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2)
54necomd 2426 . . . . . 6 (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁)
65neneqd 2361 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁)
7 2z 9233 . . . . . . 7 2 ∈ ℤ
8 uzid 9494 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 dvdsprm 12084 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
119, 1, 10sylancr 412 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
126, 11mtbird 668 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
13 1z 9231 . . . . 5 1 ∈ ℤ
14 n2dvds1 11864 . . . . 5 ¬ 2 ∥ 1
15 omoe 11848 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
1613, 14, 15mpanr12 437 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
173, 12, 16syl2anc 409 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1))
18 prmnn 12057 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
19 nnm1nn0 9169 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
201, 18, 193syl 17 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0)
21 nn0z 9225 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
22 evend2 11841 . . . 4 ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2320, 21, 223syl 17 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2417, 23mpbid 146 . 2 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ)
25 prmuz2 12078 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
26 uz2m1nn 9557 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
27 nngt0 8896 . . . 4 ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1))
28 nnre 8878 . . . . 5 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ)
29 2rp 9608 . . . . . 6 2 ∈ ℝ+
3029a1i 9 . . . . 5 ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+)
3128, 30gt0divd 9684 . . . 4 ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2)))
3227, 31mpbid 146 . . 3 ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2))
331, 25, 26, 324syl 18 . 2 (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2))
34 elnnz 9215 . 2 (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2)))
3524, 33, 34sylanbrc 415 1 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  cdif 3118  {csn 3581   class class class wbr 3987  cfv 5196  (class class class)co 5851  0cc0 7767  1c1 7768   < clt 7947  cmin 8083   / cdiv 8582  cn 8871  2c2 8922  0cn0 9128  cz 9205  cuz 9480  +crp 9603  cdvds 11742  cprime 12054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-prm 12055
This theorem is referenced by:  nnoddn2prm  12207  lgslem1  13660  lgslem4  13663  lgsval2lem  13670  lgsvalmod  13679  lgsmod  13686  lgsdirprm  13694  lgsne0  13698
  Copyright terms: Public domain W3C validator