ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4syl Unicode version

Theorem 4syl 18
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
4syl.1  |-  ( ph  ->  ps )
4syl.2  |-  ( ps 
->  ch )
4syl.3  |-  ( ch 
->  th )
4syl.4  |-  ( th 
->  ta )
Assertion
Ref Expression
4syl  |-  ( ph  ->  ta )

Proof of Theorem 4syl
StepHypRef Expression
1 4syl.1 . . 3  |-  ( ph  ->  ps )
2 4syl.2 . . 3  |-  ( ps 
->  ch )
3 4syl.3 . . 3  |-  ( ch 
->  th )
41, 2, 33syl 17 . 2  |-  ( ph  ->  th )
5 4syl.4 . 2  |-  ( th 
->  ta )
64, 5syl 14 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  f1ocnvfvrneq  5826  fcof1o  5833  isoselem  5864  isose  5865  tposss  6301  smoiso  6357  fzssp1  10136  fzosplitsnm1  10279  fzofzp1  10297  fzostep1  10307  bcm1k  10834  climuni  11439  serf0  11498  fsumparts  11616  hashiun  11624  oddprm  12400  znzrh2  14145  znf1o  14150  znidom  14156  hmeores  14494  gausslemma2dlem0c  15208  gausslemma2dlem0e  15210  gausslemma2dlem1a  15215
  Copyright terms: Public domain W3C validator