ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4syl Unicode version

Theorem 4syl 18
Description: Inference chaining three syllogisms. The use of this theorem is marked "discouraged" because it can cause the "minimize" command to have very long run times. However, feel free to use "minimize 4syl /override" if you wish. (Contributed by BJ, 14-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
4syl.1  |-  ( ph  ->  ps )
4syl.2  |-  ( ps 
->  ch )
4syl.3  |-  ( ch 
->  th )
4syl.4  |-  ( th 
->  ta )
Assertion
Ref Expression
4syl  |-  ( ph  ->  ta )

Proof of Theorem 4syl
StepHypRef Expression
1 4syl.1 . . 3  |-  ( ph  ->  ps )
2 4syl.2 . . 3  |-  ( ps 
->  ch )
3 4syl.3 . . 3  |-  ( ch 
->  th )
41, 2, 33syl 17 . 2  |-  ( ph  ->  th )
5 4syl.4 . 2  |-  ( th 
->  ta )
64, 5syl 14 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  f1ocnvfvrneq  5853  fcof1o  5860  isoselem  5891  isose  5892  tposss  6334  smoiso  6390  fzssp1  10191  fzosplitsnm1  10340  fzofzp1  10358  fzostep1  10368  bcm1k  10907  climuni  11637  serf0  11696  fsumparts  11814  hashiun  11822  oddprm  12615  znzrh2  14441  znf1o  14446  znidom  14452  hmeores  14820  gausslemma2dlem0c  15561  gausslemma2dlem0e  15563  gausslemma2dlem1a  15568
  Copyright terms: Public domain W3C validator