ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcm1k GIF version

Theorem bcm1k 10834
Description: The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 10098 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
2 nnuz 9631 . . . . . . . . 9 ℕ = (ℤ‘1)
31, 2eleqtrrdi 2287 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
43nnnn0d 9296 . . . . . . 7 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ0)
54faccld 10810 . . . . . 6 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℕ)
65nncnd 8998 . . . . 5 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℂ)
7 fznn0sub 10126 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 nn0p1nn 9282 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
97, 8syl 14 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
109nnnn0d 9296 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ0)
1110faccld 10810 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℕ)
12 elfznn 10123 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
13 nnm1nn0 9284 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
14 faccl 10809 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1512, 13, 143syl 17 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℕ)
1611, 15nnmulcld 9033 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ)
1716nncnd 8998 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ)
189nncnd 8998 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℂ)
1912nncnd 8998 . . . . 5 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
2016nnap0d 9030 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) # 0)
2112nnap0d 9030 . . . . 5 (𝐾 ∈ (1...𝑁) → 𝐾 # 0)
226, 17, 18, 19, 20, 21divmuldivapd 8853 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
23 elfzel2 10092 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℤ)
2423zcnd 9443 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
25 1cnd 8037 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
2624, 19, 25subsubd 8360 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
2726fveq2d 5559 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁 − (𝐾 − 1))) = (!‘((𝑁𝐾) + 1)))
2827oveq1d 5934 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1))) = ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))))
2928oveq2d 5935 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) = ((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))))
3026oveq1d 5934 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁𝐾) + 1) / 𝐾))
3129, 30oveq12d 5937 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)))
32 facp1 10804 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
337, 32syl 14 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
3433eqcomd 2199 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) = (!‘((𝑁𝐾) + 1)))
35 facnn2 10808 . . . . . . . 8 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
3612, 35syl 14 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
3734, 36oveq12d 5937 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
387faccld 10810 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
3938nncnd 8998 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
4012nnnn0d 9296 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ0)
4140faccld 10810 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℕ)
4241nncnd 8998 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℂ)
4339, 42, 18mul32d 8174 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)))
4411nncnd 8998 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℂ)
4515nncnd 8998 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℂ)
4644, 45, 19mulassd 8045 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
4737, 43, 463eqtr4d 2236 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾))
4847oveq2d 5935 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
4922, 31, 483eqtr4d 2236 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))))
506, 18mulcomd 8043 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · (!‘𝑁)))
5138, 41nnmulcld 9033 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
5251nncnd 8998 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
5352, 18mulcomd 8043 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾))))
5450, 53oveq12d 5937 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))))
5551nnap0d 9030 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) # 0)
569nnap0d 9030 . . . 4 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) # 0)
576, 52, 18, 55, 56divcanap5d 8838 . . 3 (𝐾 ∈ (1...𝑁) → ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
5849, 54, 573eqtrrd 2231 . 2 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
59 0p1e1 9098 . . . . . 6 (0 + 1) = 1
6059oveq1i 5929 . . . . 5 ((0 + 1)...𝑁) = (1...𝑁)
61 0z 9331 . . . . . 6 0 ∈ ℤ
62 fzp1ss 10142 . . . . . 6 (0 ∈ ℤ → ((0 + 1)...𝑁) ⊆ (0...𝑁))
6361, 62ax-mp 5 . . . . 5 ((0 + 1)...𝑁) ⊆ (0...𝑁)
6460, 63eqsstrri 3213 . . . 4 (1...𝑁) ⊆ (0...𝑁)
6564sseli 3176 . . 3 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
66 bcval2 10824 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6765, 66syl 14 . 2 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
68 ax-1cn 7967 . . . . . . . 8 1 ∈ ℂ
69 npcan 8230 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7024, 68, 69sylancl 413 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) = 𝑁)
71 peano2zm 9358 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
72 uzid 9609 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
73 peano2uz 9651 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7423, 71, 72, 734syl 18 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7570, 74eqeltrrd 2271 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
76 fzss2 10133 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
7775, 76syl 14 . . . . 5 (𝐾 ∈ (1...𝑁) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
78 elfzmlbm 10200 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...(𝑁 − 1)))
7977, 78sseldd 3181 . . . 4 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
80 bcval2 10824 . . . 4 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8179, 80syl 14 . . 3 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8281oveq1d 5934 . 2 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8358, 67, 823eqtr4d 2236 1 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  cmin 8192   / cdiv 8693  cn 8984  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  !cfa 10799  Ccbc 10821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-fz 10078  df-seqfrec 10522  df-fac 10800  df-bc 10822
This theorem is referenced by:  bcp1nk  10836  bcpasc  10840
  Copyright terms: Public domain W3C validator