ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcm1k GIF version

Theorem bcm1k 10694
Description: The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 9985 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
2 nnuz 9522 . . . . . . . . 9 ℕ = (ℤ‘1)
31, 2eleqtrrdi 2264 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
43nnnn0d 9188 . . . . . . 7 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ0)
54faccld 10670 . . . . . 6 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℕ)
65nncnd 8892 . . . . 5 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℂ)
7 fznn0sub 10013 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 nn0p1nn 9174 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
97, 8syl 14 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
109nnnn0d 9188 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ0)
1110faccld 10670 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℕ)
12 elfznn 10010 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
13 nnm1nn0 9176 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
14 faccl 10669 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1512, 13, 143syl 17 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℕ)
1611, 15nnmulcld 8927 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ)
1716nncnd 8892 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ)
189nncnd 8892 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℂ)
1912nncnd 8892 . . . . 5 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
2016nnap0d 8924 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) # 0)
2112nnap0d 8924 . . . . 5 (𝐾 ∈ (1...𝑁) → 𝐾 # 0)
226, 17, 18, 19, 20, 21divmuldivapd 8749 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
23 elfzel2 9979 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℤ)
2423zcnd 9335 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
25 1cnd 7936 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
2624, 19, 25subsubd 8258 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
2726fveq2d 5500 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁 − (𝐾 − 1))) = (!‘((𝑁𝐾) + 1)))
2827oveq1d 5868 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1))) = ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))))
2928oveq2d 5869 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) = ((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))))
3026oveq1d 5868 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁𝐾) + 1) / 𝐾))
3129, 30oveq12d 5871 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)))
32 facp1 10664 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
337, 32syl 14 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
3433eqcomd 2176 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) = (!‘((𝑁𝐾) + 1)))
35 facnn2 10668 . . . . . . . 8 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
3612, 35syl 14 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
3734, 36oveq12d 5871 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
387faccld 10670 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
3938nncnd 8892 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
4012nnnn0d 9188 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ0)
4140faccld 10670 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℕ)
4241nncnd 8892 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℂ)
4339, 42, 18mul32d 8072 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)))
4411nncnd 8892 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℂ)
4515nncnd 8892 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℂ)
4644, 45, 19mulassd 7943 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
4737, 43, 463eqtr4d 2213 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾))
4847oveq2d 5869 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
4922, 31, 483eqtr4d 2213 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))))
506, 18mulcomd 7941 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · (!‘𝑁)))
5138, 41nnmulcld 8927 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
5251nncnd 8892 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
5352, 18mulcomd 7941 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾))))
5450, 53oveq12d 5871 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))))
5551nnap0d 8924 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) # 0)
569nnap0d 8924 . . . 4 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) # 0)
576, 52, 18, 55, 56divcanap5d 8734 . . 3 (𝐾 ∈ (1...𝑁) → ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
5849, 54, 573eqtrrd 2208 . 2 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
59 0p1e1 8992 . . . . . 6 (0 + 1) = 1
6059oveq1i 5863 . . . . 5 ((0 + 1)...𝑁) = (1...𝑁)
61 0z 9223 . . . . . 6 0 ∈ ℤ
62 fzp1ss 10029 . . . . . 6 (0 ∈ ℤ → ((0 + 1)...𝑁) ⊆ (0...𝑁))
6361, 62ax-mp 5 . . . . 5 ((0 + 1)...𝑁) ⊆ (0...𝑁)
6460, 63eqsstrri 3180 . . . 4 (1...𝑁) ⊆ (0...𝑁)
6564sseli 3143 . . 3 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
66 bcval2 10684 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6765, 66syl 14 . 2 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
68 ax-1cn 7867 . . . . . . . 8 1 ∈ ℂ
69 npcan 8128 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7024, 68, 69sylancl 411 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) = 𝑁)
71 peano2zm 9250 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
72 uzid 9501 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
73 peano2uz 9542 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7423, 71, 72, 734syl 18 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7570, 74eqeltrrd 2248 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
76 fzss2 10020 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
7775, 76syl 14 . . . . 5 (𝐾 ∈ (1...𝑁) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
78 elfzmlbm 10087 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...(𝑁 − 1)))
7977, 78sseldd 3148 . . . 4 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
80 bcval2 10684 . . . 4 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8179, 80syl 14 . . 3 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8281oveq1d 5868 . 2 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8358, 67, 823eqtr4d 2213 1 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wss 3121  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cmin 8090   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  cuz 9487  ...cfz 9965  !cfa 10659  Ccbc 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-fz 9966  df-seqfrec 10402  df-fac 10660  df-bc 10682
This theorem is referenced by:  bcp1nk  10696  bcpasc  10700
  Copyright terms: Public domain W3C validator