![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzostep1 | GIF version |
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzostep1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10214 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | uzid 9609 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
3 | peano2uz 9651 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
4 | fzoss1 10241 | . . . 4 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) | |
5 | 1, 2, 3, 4 | 4syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) |
6 | 1z 9346 | . . . 4 ⊢ 1 ∈ ℤ | |
7 | fzoaddel 10262 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) | |
8 | 6, 7 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) |
9 | 5, 8 | sseldd 3181 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1))) |
10 | elfzoel2 10215 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
11 | elfzolt3 10227 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶) | |
12 | zre 9324 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
13 | zre 9324 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
14 | ltle 8109 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) | |
15 | 12, 13, 14 | syl2an 289 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 1, 10, 15 | syl2anc 411 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
17 | 11, 16 | mpd 13 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐶) |
18 | eluz2 9601 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
19 | 1, 10, 17, 18 | syl3anbrc 1183 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
20 | fzosplitsni 10305 | . . 3 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) |
22 | 9, 21 | mpbid 147 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 ..^cfzo 10211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |