ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzostep1 GIF version

Theorem fzostep1 10207
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzostep1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))

Proof of Theorem fzostep1
StepHypRef Expression
1 elfzoel1 10115 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
2 uzid 9515 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
3 peano2uz 9556 . . . 4 (𝐵 ∈ (ℤ𝐵) → (𝐵 + 1) ∈ (ℤ𝐵))
4 fzoss1 10141 . . . 4 ((𝐵 + 1) ∈ (ℤ𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
51, 2, 3, 44syl 18 . . 3 (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
6 1z 9252 . . . 4 1 ∈ ℤ
7 fzoaddel 10162 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
86, 7mpan2 425 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
95, 8sseldd 3154 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)))
10 elfzoel2 10116 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
11 elfzolt3 10127 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶)
12 zre 9230 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
13 zre 9230 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
14 ltle 8019 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶𝐵𝐶))
1512, 13, 14syl2an 289 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶𝐵𝐶))
161, 10, 15syl2anc 411 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶𝐵𝐶))
1711, 16mpd 13 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐶)
18 eluz2 9507 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
191, 10, 17, 18syl3anbrc 1181 . . 3 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ𝐵))
20 fzosplitsni 10205 . . 3 (𝐶 ∈ (ℤ𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
2119, 20syl 14 . 2 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
229, 21mpbid 147 1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 708   = wceq 1353  wcel 2146  wss 3127   class class class wbr 3998  cfv 5208  (class class class)co 5865  cr 7785  1c1 7787   + caddc 7789   < clt 7966  cle 7967  cz 9226  cuz 9501  ..^cfzo 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-fz 9980  df-fzo 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator