![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzostep1 | GIF version |
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzostep1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10148 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | uzid 9545 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
3 | peano2uz 9586 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
4 | fzoss1 10174 | . . . 4 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) | |
5 | 1, 2, 3, 4 | 4syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) |
6 | 1z 9282 | . . . 4 ⊢ 1 ∈ ℤ | |
7 | fzoaddel 10195 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) | |
8 | 6, 7 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) |
9 | 5, 8 | sseldd 3158 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1))) |
10 | elfzoel2 10149 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
11 | elfzolt3 10160 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶) | |
12 | zre 9260 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
13 | zre 9260 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
14 | ltle 8048 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) | |
15 | 12, 13, 14 | syl2an 289 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 1, 10, 15 | syl2anc 411 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
17 | 11, 16 | mpd 13 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐶) |
18 | eluz2 9537 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
19 | 1, 10, 17, 18 | syl3anbrc 1181 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
20 | fzosplitsni 10238 | . . 3 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) |
22 | 9, 21 | mpbid 147 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 ℝcr 7813 1c1 7815 + caddc 7817 < clt 7995 ≤ cle 7996 ℤcz 9256 ℤ≥cuz 9531 ..^cfzo 10145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 df-fzo 10146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |