ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzostep1 GIF version

Theorem fzostep1 10313
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzostep1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))

Proof of Theorem fzostep1
StepHypRef Expression
1 elfzoel1 10220 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
2 uzid 9615 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
3 peano2uz 9657 . . . 4 (𝐵 ∈ (ℤ𝐵) → (𝐵 + 1) ∈ (ℤ𝐵))
4 fzoss1 10247 . . . 4 ((𝐵 + 1) ∈ (ℤ𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
51, 2, 3, 44syl 18 . . 3 (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
6 1z 9352 . . . 4 1 ∈ ℤ
7 fzoaddel 10268 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
86, 7mpan2 425 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
95, 8sseldd 3184 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)))
10 elfzoel2 10221 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
11 elfzolt3 10233 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶)
12 zre 9330 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
13 zre 9330 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
14 ltle 8114 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶𝐵𝐶))
1512, 13, 14syl2an 289 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶𝐵𝐶))
161, 10, 15syl2anc 411 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶𝐵𝐶))
1711, 16mpd 13 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐶)
18 eluz2 9607 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
191, 10, 17, 18syl3anbrc 1183 . . 3 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ𝐵))
20 fzosplitsni 10311 . . 3 (𝐶 ∈ (ℤ𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
2119, 20syl 14 . 2 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
229, 21mpbid 147 1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cz 9326  cuz 9601  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator