ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzostep1 GIF version

Theorem fzostep1 10038
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzostep1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))

Proof of Theorem fzostep1
StepHypRef Expression
1 elfzoel1 9946 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
2 uzid 9359 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
3 peano2uz 9400 . . . 4 (𝐵 ∈ (ℤ𝐵) → (𝐵 + 1) ∈ (ℤ𝐵))
4 fzoss1 9972 . . . 4 ((𝐵 + 1) ∈ (ℤ𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
51, 2, 3, 44syl 18 . . 3 (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1)))
6 1z 9099 . . . 4 1 ∈ ℤ
7 fzoaddel 9993 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
86, 7mpan2 421 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1)))
95, 8sseldd 3098 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)))
10 elfzoel2 9947 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
11 elfzolt3 9958 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶)
12 zre 9077 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
13 zre 9077 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
14 ltle 7870 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶𝐵𝐶))
1512, 13, 14syl2an 287 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶𝐵𝐶))
161, 10, 15syl2anc 408 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶𝐵𝐶))
1711, 16mpd 13 . . . 4 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐶)
18 eluz2 9351 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
191, 10, 17, 18syl3anbrc 1165 . . 3 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ𝐵))
20 fzosplitsni 10036 . . 3 (𝐶 ∈ (ℤ𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
2119, 20syl 14 . 2 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)))
229, 21mpbid 146 1 (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 697   = wceq 1331  wcel 1480  wss 3071   class class class wbr 3932  cfv 5126  (class class class)co 5777  cr 7638  1c1 7640   + caddc 7642   < clt 7819  cle 7820  cz 9073  cuz 9345  ..^cfzo 9943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-addcom 7739  ax-addass 7741  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-0id 7747  ax-rnegex 7748  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-inn 8740  df-n0 8997  df-z 9074  df-uz 9346  df-fz 9815  df-fzo 9944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator