Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzofzp1 | GIF version |
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzofzp1 | ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10101 | . . . 4 ⊢ (𝐶 ∈ (𝐴..^𝐵) → 𝐴 ∈ ℤ) | |
2 | uzid 9501 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ≥‘𝐴)) | |
3 | peano2uz 9542 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘𝐴) → (𝐴 + 1) ∈ (ℤ≥‘𝐴)) | |
4 | fzoss1 10127 | . . . 4 ⊢ ((𝐴 + 1) ∈ (ℤ≥‘𝐴) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1))) | |
5 | 1, 2, 3, 4 | 4syl 18 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1))) |
6 | 1z 9238 | . . . 4 ⊢ 1 ∈ ℤ | |
7 | fzoaddel 10148 | . . . 4 ⊢ ((𝐶 ∈ (𝐴..^𝐵) ∧ 1 ∈ ℤ) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1))) | |
8 | 6, 7 | mpan2 423 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1))) |
9 | 5, 8 | sseldd 3148 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴..^(𝐵 + 1))) |
10 | elfzoel2 10102 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ) | |
11 | fzval3 10160 | . . 3 ⊢ (𝐵 ∈ ℤ → (𝐴...𝐵) = (𝐴..^(𝐵 + 1))) | |
12 | 10, 11 | syl 14 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐴...𝐵) = (𝐴..^(𝐵 + 1))) |
13 | 9, 12 | eleqtrrd 2250 | 1 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ‘cfv 5198 (class class class)co 5853 1c1 7775 + caddc 7777 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: fzofzp1b 10184 exfzdc 10196 seq3clss 10423 seq3caopr3 10437 seq3caopr2 10438 seq3f1olemp 10458 seq3id3 10463 ser3ge0 10473 telfsumo 11429 telfsumo2 11430 fsumparts 11433 prodfap0 11508 prodfrecap 11509 eulerthlemrprm 12183 eulerthlema 12184 |
Copyright terms: Public domain | W3C validator |