| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzofzp1 | GIF version | ||
| Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofzp1 | ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 10349 | . . . 4 ⊢ (𝐶 ∈ (𝐴..^𝐵) → 𝐴 ∈ ℤ) | |
| 2 | uzid 9744 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ≥‘𝐴)) | |
| 3 | peano2uz 9786 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘𝐴) → (𝐴 + 1) ∈ (ℤ≥‘𝐴)) | |
| 4 | fzoss1 10377 | . . . 4 ⊢ ((𝐴 + 1) ∈ (ℤ≥‘𝐴) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1))) | |
| 5 | 1, 2, 3, 4 | 4syl 18 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1))) |
| 6 | 1z 9480 | . . . 4 ⊢ 1 ∈ ℤ | |
| 7 | fzoaddel 10401 | . . . 4 ⊢ ((𝐶 ∈ (𝐴..^𝐵) ∧ 1 ∈ ℤ) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1))) | |
| 8 | 6, 7 | mpan2 425 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1))) |
| 9 | 5, 8 | sseldd 3225 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴..^(𝐵 + 1))) |
| 10 | elfzoel2 10350 | . . 3 ⊢ (𝐶 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ) | |
| 11 | fzval3 10418 | . . 3 ⊢ (𝐵 ∈ ℤ → (𝐴...𝐵) = (𝐴..^(𝐵 + 1))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐴...𝐵) = (𝐴..^(𝐵 + 1))) |
| 13 | 9, 12 | eleqtrrd 2309 | 1 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 1c1 8008 + caddc 8010 ℤcz 9454 ℤ≥cuz 9730 ...cfz 10212 ..^cfzo 10346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 |
| This theorem is referenced by: fzofzp1b 10442 exfzdc 10454 seq3clss 10701 seq3caopr3 10721 seqcaopr3g 10722 seq3caopr2 10723 seqcaopr2g 10724 seq3f1olemp 10745 seqf1oglem2a 10748 seq3id3 10754 seqfeq4g 10761 ser3ge0 10766 swrds1 11208 telfsumo 11985 telfsumo2 11986 fsumparts 11989 prodfap0 12064 prodfrecap 12065 eulerthlemrprm 12759 eulerthlema 12760 gsumfzz 13536 gsumfzfsumlemm 14559 upgriswlkdc 16081 uspgr2wlkeq 16086 wlkres 16098 |
| Copyright terms: Public domain | W3C validator |