| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isose | GIF version | ||
| Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| isose | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | isof1o 5899 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
| 3 | f1ofun 5546 | . . . 4 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) | |
| 4 | vex 2779 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 4 | funimaex 5378 | . . . 4 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
| 6 | 2, 3, 5 | 3syl 17 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
| 7 | 1, 6 | isoselem 5912 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 → 𝑆 Se 𝐵)) |
| 8 | isocnv 5903 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
| 9 | isof1o 5899 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻:𝐵–1-1-onto→𝐴) | |
| 10 | f1ofun 5546 | . . . 4 ⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → Fun ◡𝐻) | |
| 11 | 4 | funimaex 5378 | . . . 4 ⊢ (Fun ◡𝐻 → (◡𝐻 “ 𝑥) ∈ V) |
| 12 | 8, 9, 10, 11 | 4syl 18 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (◡𝐻 “ 𝑥) ∈ V) |
| 13 | 8, 12 | isoselem 5912 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Se 𝐵 → 𝑅 Se 𝐴)) |
| 14 | 7, 13 | impbid 129 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2178 Vcvv 2776 Se wse 4394 ◡ccnv 4692 “ cima 4696 Fun wfun 5284 –1-1-onto→wf1o 5289 Isom wiso 5291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-se 4398 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |