![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashiun | GIF version |
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
fsumiun.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumiun.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
fsumiun.3 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
hashiun | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumiun.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumiun.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) | |
3 | fsumiun.3 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | 1cnd 8035 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 1 ∈ ℂ) | |
5 | 1, 2, 3, 4 | fsumiun 11620 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1) |
6 | 2 | ralrimiva 2567 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
7 | iunfidisj 7005 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | |
8 | 1, 6, 3, 7 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
9 | ax-1cn 7965 | . . . 4 ⊢ 1 ∈ ℂ | |
10 | fsumconst 11597 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) | |
11 | 8, 9, 10 | sylancl 413 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) |
12 | hashcl 10852 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0) | |
13 | nn0cn 9250 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ) | |
14 | mulrid 8016 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) | |
15 | 8, 12, 13, 14 | 4syl 18 | . . 3 ⊢ (𝜑 → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
16 | 11, 15 | eqtrd 2226 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
17 | fsumconst 11597 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
18 | 2, 9, 17 | sylancl 413 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
19 | hashcl 10852 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
20 | nn0cn 9250 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ) | |
21 | mulrid 8016 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵)) | |
22 | 2, 19, 20, 21 | 4syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵)) |
23 | 18, 22 | eqtrd 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = (♯‘𝐵)) |
24 | 23 | sumeq2dv 11511 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
25 | 5, 16, 24 | 3eqtr3d 2234 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∪ ciun 3912 Disj wdisj 4006 ‘cfv 5254 (class class class)co 5918 Fincfn 6794 ℂcc 7870 1c1 7873 · cmul 7877 ℕ0cn0 9240 ♯chash 10846 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: hash2iun 11622 hashrabrex 11624 hashuni 11625 phisum 12378 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |