ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashiun GIF version

Theorem hashiun 11621
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
hashiun (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem hashiun
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
2 fsumiun.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
3 fsumiun.3 . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 1cnd 8035 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 1 ∈ ℂ)
51, 2, 3, 4fsumiun 11620 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = Σ𝑥𝐴 Σ𝑘𝐵 1)
62ralrimiva 2567 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7 iunfidisj 7005 . . . . 5 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
81, 6, 3, 7syl3anc 1249 . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ Fin)
9 ax-1cn 7965 . . . 4 1 ∈ ℂ
10 fsumconst 11597 . . . 4 (( 𝑥𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
118, 9, 10sylancl 413 . . 3 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = ((♯‘ 𝑥𝐴 𝐵) · 1))
12 hashcl 10852 . . . 4 ( 𝑥𝐴 𝐵 ∈ Fin → (♯‘ 𝑥𝐴 𝐵) ∈ ℕ0)
13 nn0cn 9250 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℕ0 → (♯‘ 𝑥𝐴 𝐵) ∈ ℂ)
14 mulrid 8016 . . . 4 ((♯‘ 𝑥𝐴 𝐵) ∈ ℂ → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
158, 12, 13, 144syl 18 . . 3 (𝜑 → ((♯‘ 𝑥𝐴 𝐵) · 1) = (♯‘ 𝑥𝐴 𝐵))
1611, 15eqtrd 2226 . 2 (𝜑 → Σ𝑘 𝑥𝐴 𝐵1 = (♯‘ 𝑥𝐴 𝐵))
17 fsumconst 11597 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
182, 9, 17sylancl 413 . . . 4 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = ((♯‘𝐵) · 1))
19 hashcl 10852 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
20 nn0cn 9250 . . . . 5 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
21 mulrid 8016 . . . . 5 ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵))
222, 19, 20, 214syl 18 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵))
2318, 22eqtrd 2226 . . 3 ((𝜑𝑥𝐴) → Σ𝑘𝐵 1 = (♯‘𝐵))
2423sumeq2dv 11511 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 1 = Σ𝑥𝐴 (♯‘𝐵))
255, 16, 243eqtr3d 2234 1 (𝜑 → (♯‘ 𝑥𝐴 𝐵) = Σ𝑥𝐴 (♯‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472   ciun 3912  Disj wdisj 4006  cfv 5254  (class class class)co 5918  Fincfn 6794  cc 7870  1c1 7873   · cmul 7877  0cn0 9240  chash 10846  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  hash2iun  11622  hashrabrex  11624  hashuni  11625  phisum  12378  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator