![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashiun | GIF version |
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
fsumiun.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumiun.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
fsumiun.3 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
hashiun | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumiun.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumiun.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) | |
3 | fsumiun.3 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
4 | 1cnd 7504 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 1 ∈ ℂ) | |
5 | 1, 2, 3, 4 | fsumiun 10871 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1) |
6 | 2 | ralrimiva 2446 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
7 | iunfidisj 6655 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | |
8 | 1, 6, 3, 7 | syl3anc 1174 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
9 | ax-1cn 7438 | . . . 4 ⊢ 1 ∈ ℂ | |
10 | fsumconst 10848 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) | |
11 | 8, 9, 10 | sylancl 404 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1)) |
12 | hashcl 10189 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0) | |
13 | nn0cn 8683 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℕ0 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ) | |
14 | mulid1 7485 | . . . 4 ⊢ ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) ∈ ℂ → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) | |
15 | 8, 12, 13, 14 | 4syl 18 | . . 3 ⊢ (𝜑 → ((♯‘∪ 𝑥 ∈ 𝐴 𝐵) · 1) = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
16 | 11, 15 | eqtrd 2120 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵1 = (♯‘∪ 𝑥 ∈ 𝐴 𝐵)) |
17 | fsumconst 10848 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
18 | 2, 9, 17 | sylancl 404 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
19 | hashcl 10189 | . . . . 5 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
20 | nn0cn 8683 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ) | |
21 | mulid1 7485 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℂ → ((♯‘𝐵) · 1) = (♯‘𝐵)) | |
22 | 2, 19, 20, 21 | 4syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (♯‘𝐵)) |
23 | 18, 22 | eqtrd 2120 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 1 = (♯‘𝐵)) |
24 | 23 | sumeq2dv 10757 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
25 | 5, 16, 24 | 3eqtr3d 2128 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ𝑥 ∈ 𝐴 (♯‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ∪ ciun 3730 Disj wdisj 3822 ‘cfv 5015 (class class class)co 5652 Fincfn 6457 ℂcc 7348 1c1 7351 · cmul 7355 ℕ0cn0 8673 ♯chash 10183 Σcsu 10742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 ax-arch 7464 ax-caucvg 7465 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-disj 3823 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-isom 5024 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-frec 6156 df-1o 6181 df-oadd 6185 df-er 6292 df-en 6458 df-dom 6459 df-fin 6460 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-inn 8423 df-2 8481 df-3 8482 df-4 8483 df-n0 8674 df-z 8751 df-uz 9020 df-q 9105 df-rp 9135 df-fz 9425 df-fzo 9554 df-iseq 9853 df-seq3 9854 df-exp 9955 df-ihash 10184 df-cj 10276 df-re 10277 df-im 10278 df-rsqrt 10431 df-abs 10432 df-clim 10667 df-isum 10743 |
This theorem is referenced by: hash2iun 10873 hashrabrex 10875 hashuni 10876 |
Copyright terms: Public domain | W3C validator |