ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem GIF version

Theorem isoselem 5815
Description: Lemma for isose 5816. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isoselem (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isoselem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 4997 . . . . . . . . 9 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
21biimpi 120 . . . . . . . 8 (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
32r19.21bi 2565 . . . . . . 7 ((𝑅 Se 𝐴𝑧𝐴) → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
43expcom 116 . . . . . 6 (𝑧𝐴 → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
54adantl 277 . . . . 5 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
6 imaeq2 4962 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → (𝐻𝑥) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))))
76eleq1d 2246 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝐻𝑥) ∈ V ↔ (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
87imbi2d 230 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝜑 → (𝐻𝑥) ∈ V) ↔ (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V)))
9 isofrlem.2 . . . . . . . . 9 (𝜑 → (𝐻𝑥) ∈ V)
108, 9vtoclg 2797 . . . . . . . 8 ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1110com12 30 . . . . . . 7 (𝜑 → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1211adantr 276 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
13 isofrlem.1 . . . . . . . 8 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
14 isoini 5813 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1513, 14sylan 283 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1615eleq1d 2246 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1712, 16sylibd 149 . . . . 5 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
185, 17syld 45 . . . 4 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1918ralrimdva 2557 . . 3 (𝜑 → (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
20 isof1o 5802 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
21 f1ofn 5458 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
22 sneq 3602 . . . . . . . . 9 (𝑦 = (𝐻𝑧) → {𝑦} = {(𝐻𝑧)})
2322imaeq2d 4966 . . . . . . . 8 (𝑦 = (𝐻𝑧) → (𝑆 “ {𝑦}) = (𝑆 “ {(𝐻𝑧)}))
2423ineq2d 3336 . . . . . . 7 (𝑦 = (𝐻𝑧) → (𝐵 ∩ (𝑆 “ {𝑦})) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
2524eleq1d 2246 . . . . . 6 (𝑦 = (𝐻𝑧) → ((𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2625ralrn 5650 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2713, 20, 21, 264syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
28 f1ofo 5464 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
29 forn 5437 . . . . . 6 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
3013, 20, 28, 294syl 18 . . . . 5 (𝜑 → ran 𝐻 = 𝐵)
3130raleqdv 2678 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3227, 31bitr3d 190 . . 3 (𝜑 → (∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3319, 32sylibd 149 . 2 (𝜑 → (𝑅 Se 𝐴 → ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
34 dfse2 4997 . 2 (𝑆 Se 𝐵 ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V)
3533, 34syl6ibr 162 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  cin 3128  {csn 3591   Se wse 4326  ccnv 4622  ran crn 4624  cima 4626   Fn wfn 5207  ontowfo 5210  1-1-ontowf1o 5211  cfv 5212   Isom wiso 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-se 4330  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221
This theorem is referenced by:  isose  5816
  Copyright terms: Public domain W3C validator