ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem GIF version

Theorem isoselem 5867
Description: Lemma for isose 5868. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
isofrlem.2 (𝜑 → (𝐻𝑥) ∈ V)
Assertion
Ref Expression
isoselem (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆

Proof of Theorem isoselem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5042 . . . . . . . . 9 (𝑅 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
21biimpi 120 . . . . . . . 8 (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
32r19.21bi 2585 . . . . . . 7 ((𝑅 Se 𝐴𝑧𝐴) → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V)
43expcom 116 . . . . . 6 (𝑧𝐴 → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
54adantl 277 . . . . 5 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐴 ∩ (𝑅 “ {𝑧})) ∈ V))
6 imaeq2 5005 . . . . . . . . . . 11 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → (𝐻𝑥) = (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))))
76eleq1d 2265 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝐻𝑥) ∈ V ↔ (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
87imbi2d 230 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝑅 “ {𝑧})) → ((𝜑 → (𝐻𝑥) ∈ V) ↔ (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V)))
9 isofrlem.2 . . . . . . . . 9 (𝜑 → (𝐻𝑥) ∈ V)
108, 9vtoclg 2824 . . . . . . . 8 ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝜑 → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1110com12 30 . . . . . . 7 (𝜑 → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
1211adantr 276 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V))
13 isofrlem.1 . . . . . . . 8 (𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
14 isoini 5865 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1513, 14sylan 283 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
1615eleq1d 2265 . . . . . 6 ((𝜑𝑧𝐴) → ((𝐻 “ (𝐴 ∩ (𝑅 “ {𝑧}))) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1712, 16sylibd 149 . . . . 5 ((𝜑𝑧𝐴) → ((𝐴 ∩ (𝑅 “ {𝑧})) ∈ V → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
185, 17syld 45 . . . 4 ((𝜑𝑧𝐴) → (𝑅 Se 𝐴 → (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
1918ralrimdva 2577 . . 3 (𝜑 → (𝑅 Se 𝐴 → ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
20 isof1o 5854 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
21 f1ofn 5505 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
22 sneq 3633 . . . . . . . . 9 (𝑦 = (𝐻𝑧) → {𝑦} = {(𝐻𝑧)})
2322imaeq2d 5009 . . . . . . . 8 (𝑦 = (𝐻𝑧) → (𝑆 “ {𝑦}) = (𝑆 “ {(𝐻𝑧)}))
2423ineq2d 3364 . . . . . . 7 (𝑦 = (𝐻𝑧) → (𝐵 ∩ (𝑆 “ {𝑦})) = (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})))
2524eleq1d 2265 . . . . . 6 (𝑦 = (𝐻𝑧) → ((𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2625ralrn 5700 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
2713, 20, 21, 264syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V))
28 f1ofo 5511 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴onto𝐵)
29 forn 5483 . . . . . 6 (𝐻:𝐴onto𝐵 → ran 𝐻 = 𝐵)
3013, 20, 28, 294syl 18 . . . . 5 (𝜑 → ran 𝐻 = 𝐵)
3130raleqdv 2699 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝐻(𝐵 ∩ (𝑆 “ {𝑦})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3227, 31bitr3d 190 . . 3 (𝜑 → (∀𝑧𝐴 (𝐵 ∩ (𝑆 “ {(𝐻𝑧)})) ∈ V ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
3319, 32sylibd 149 . 2 (𝜑 → (𝑅 Se 𝐴 → ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V))
34 dfse2 5042 . 2 (𝑆 Se 𝐵 ↔ ∀𝑦𝐵 (𝐵 ∩ (𝑆 “ {𝑦})) ∈ V)
3533, 34imbitrrdi 162 1 (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cin 3156  {csn 3622   Se wse 4364  ccnv 4662  ran crn 4664  cima 4666   Fn wfn 5253  ontowfo 5256  1-1-ontowf1o 5257  cfv 5258   Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-se 4368  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by:  isose  5868
  Copyright terms: Public domain W3C validator