ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serf0 GIF version

Theorem serf0 11849
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serf0.2 (𝜑𝑀 ∈ ℤ)
serf0.3 (𝜑𝐹𝑉)
serf0.4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
serf0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serf0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serf0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serf0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 11848 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 411 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
63cau3 11612 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
75, 6sylib 122 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
83peano2uzs 9767 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 277 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 9719 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 9724 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 9766 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5623 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1)))
1413oveq2d 6010 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))
1514fveq2d 5627 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))))
1615breq1d 4092 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2903 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1918adantld 278 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2591 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)
21 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3eleqtrdi 2322 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 9719 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 9734 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 283 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5623 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1)))
28 fvoveq1 6017 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))
2927, 28oveq12d 6012 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))
3029fveq2d 5627 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))))
3130breq1d 4092 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3231rspcv 2903 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3326, 32syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
34 serf0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
353, 1, 34serf 10692 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
3635ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ)
373uztrn2 9728 . . . . . . . . . . . . . 14 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3821, 26, 37syl2an2r 597 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
3936, 38ffvelcdmd 5764 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ)
403uztrn2 9728 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
419, 40sylan 283 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4236, 41ffvelcdmd 5764 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ)
4339, 42abssubd 11690 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
44 eluzelz 9719 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4544adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4645zcnd 9558 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
47 ax-1cn 8080 . . . . . . . . . . . . . . 15 1 ∈ ℂ
48 npcan 8343 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
4946, 47, 48sylancl 413 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5049fveq2d 5627 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘))
5150oveq2d 6010 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))
5251fveq2d 5627 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))))
531ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
54 eluzp1p1 9736 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5522, 54syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
56 eqid 2229 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5756uztrn2 9728 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
5855, 57sylan 283 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
59 fveq2 5623 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6059eleq1d 2298 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6134ralrimiva 2603 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6261ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
63 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3eleqtrrdi 2323 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6560, 62, 64rspcdva 2912 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
66 addcl 8112 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
6766adantl 277 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
6853, 58, 65, 67seq3m1 10682 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)))
6968oveq1d 6009 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
7034adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7141, 70syldan 282 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7239, 71pncan2d 8447 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹𝑘))
7369, 72eqtr2d 2263 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
7473fveq2d 5627 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
7543, 52, 743eqtr4d 2272 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
7675breq1d 4092 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
7733, 76sylibd 149 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
7877ralrimdva 2610 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
7920, 78syl5 32 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
80 fveq2 5623 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8180raleqdv 2734 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8281rspcev 2907 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
839, 79, 82syl6an 1476 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8483rexlimdva 2648 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8584ralimdv 2598 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
867, 85mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
87 serf0.3 . . 3 (𝜑𝐹𝑉)
88 eqidd 2230 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
893, 1, 87, 88, 34clim0c 11783 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9086, 89mpbird 167 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  dom cdm 4716  wf 5310  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   + caddc 7990   < clt 8169  cmin 8305  cz 9434  cuz 9710  +crp 9837  seqcseq 10656  abscabs 11494  cli 11775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776
This theorem is referenced by:  mertenslem2  12033
  Copyright terms: Public domain W3C validator