Step | Hyp | Ref
| Expression |
1 | | serf0.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | serf0.4 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
3 | | climcauc.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | 3 | climcaucn 11314 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
5 | 1, 2, 4 | syl2anc 409 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
6 | 3 | cau3 11079 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
7 | 5, 6 | sylib 121 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
8 | 3 | peano2uzs 9543 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
9 | 8 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
10 | | eluzelz 9496 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) |
11 | | uzid 9501 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) |
12 | | peano2uz 9542 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑚) → (𝑚 + 1) ∈
(ℤ≥‘𝑚)) |
13 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1))) |
14 | 13 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) |
15 | 14 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))) |
16 | 15 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
17 | 16 | rspcv 2830 |
. . . . . . . . . 10
⊢ ((𝑚 + 1) ∈
(ℤ≥‘𝑚) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
18 | 10, 11, 12, 17 | 4syl 18 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
19 | 18 | adantld 276 |
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
20 | 19 | ralimia 2531 |
. . . . . . 7
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥) |
21 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
22 | 21, 3 | eleqtrdi 2263 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
23 | | eluzelz 9496 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
25 | | eluzp1m1 9510 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
26 | 24, 25 | sylan 281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
27 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1))) |
28 | | fvoveq1 5876 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) |
29 | 27, 28 | oveq12d 5871 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) |
30 | 29 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))) |
31 | 30 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
32 | 31 | rspcv 2830 |
. . . . . . . . . 10
⊢ ((𝑘 − 1) ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
33 | 26, 32 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
34 | | serf0.5 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
35 | 3, 1, 34 | serf 10430 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
36 | 35 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
37 | 3 | uztrn2 9504 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) |
38 | 21, 26, 37 | syl2an2r 590 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍) |
39 | 36, 38 | ffvelrnd 5632 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ) |
40 | 3 | uztrn2 9504 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
41 | 9, 40 | sylan 281 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
42 | 36, 41 | ffvelrnd 5632 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ) |
43 | 39, 42 | abssubd 11157 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
44 | | eluzelz 9496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑘 ∈ ℤ) |
45 | 44 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℤ) |
46 | 45 | zcnd 9335 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℂ) |
47 | | ax-1cn 7867 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
48 | | npcan 8128 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 −
1) + 1) = 𝑘) |
49 | 46, 47, 48 | sylancl 411 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘) |
50 | 49 | fveq2d 5500 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘)) |
51 | 50 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) |
52 | 51 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))) |
53 | 1 | ad2antrr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑀 ∈ ℤ) |
54 | | eluzp1p1 9512 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
55 | 22, 54 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
56 | | eqid 2170 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
57 | 56 | uztrn2 9504 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
58 | 55, 57 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
59 | | fveq2 5496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑎 → (𝐹‘𝑘) = (𝐹‘𝑎)) |
60 | 59 | eleq1d 2239 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑎 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑎) ∈ ℂ)) |
61 | 34 | ralrimiva 2543 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
62 | 61 | ad3antrrr 489 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
63 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) |
64 | 63, 3 | eleqtrrdi 2264 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ 𝑍) |
65 | 60, 62, 64 | rspcdva 2839 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑎) ∈ ℂ) |
66 | | addcl 7899 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ) |
67 | 66 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ) |
68 | 53, 58, 65, 67 | seq3m1 10424 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) |
69 | 68 | oveq1d 5868 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
70 | 34 | adantlr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
71 | 41, 70 | syldan 280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
72 | 39, 71 | pncan2d 8232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹‘𝑘)) |
73 | 69, 72 | eqtr2d 2204 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
74 | 73 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (abs‘(𝐹‘𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
75 | 43, 52, 74 | 3eqtr4d 2213 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹‘𝑘))) |
76 | 75 | breq1d 3999 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
77 | 33, 76 | sylibd 148 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹‘𝑘)) < 𝑥)) |
78 | 77 | ralrimdva 2550 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
79 | 20, 78 | syl5 32 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
80 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑗 + 1))) |
81 | 80 | raleqdv 2671 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
82 | 81 | rspcev 2834 |
. . . . . 6
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
83 | 9, 79, 82 | syl6an 1427 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
84 | 83 | rexlimdva 2587 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
85 | 84 | ralimdv 2538 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
86 | 7, 85 | mpd 13 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
87 | | serf0.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
88 | | eqidd 2171 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
89 | 3, 1, 87, 88, 34 | clim0c 11249 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
90 | 86, 89 | mpbird 166 |
1
⊢ (𝜑 → 𝐹 ⇝ 0) |