| Step | Hyp | Ref
 | Expression | 
| 1 |   | serf0.2 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 2 |   | serf0.4 | 
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | 
| 3 |   | climcauc.1 | 
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 4 | 3 | climcaucn 11516 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) | 
| 5 | 1, 2, 4 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) | 
| 6 | 3 | cau3 11280 | 
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) | 
| 7 | 5, 6 | sylib 122 | 
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) | 
| 8 | 3 | peano2uzs 9658 | 
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) | 
| 9 | 8 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) | 
| 10 |   | eluzelz 9610 | 
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) | 
| 11 |   | uzid 9615 | 
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) | 
| 12 |   | peano2uz 9657 | 
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑚) → (𝑚 + 1) ∈
(ℤ≥‘𝑚)) | 
| 13 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1))) | 
| 14 | 13 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) | 
| 15 | 14 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))) | 
| 16 | 15 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 17 | 16 | rspcv 2864 | 
. . . . . . . . . 10
⊢ ((𝑚 + 1) ∈
(ℤ≥‘𝑚) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 18 | 10, 11, 12, 17 | 4syl 18 | 
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 19 | 18 | adantld 278 | 
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 20 | 19 | ralimia 2558 | 
. . . . . . 7
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥) | 
| 21 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | 
| 22 | 21, 3 | eleqtrdi 2289 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 23 |   | eluzelz 9610 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | 
| 24 | 22, 23 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) | 
| 25 |   | eluzp1m1 9625 | 
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) | 
| 26 | 24, 25 | sylan 283 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) | 
| 27 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1))) | 
| 28 |   | fvoveq1 5945 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) | 
| 29 | 27, 28 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) | 
| 30 | 29 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))) | 
| 31 | 30 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 32 | 31 | rspcv 2864 | 
. . . . . . . . . 10
⊢ ((𝑘 − 1) ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 33 | 26, 32 | syl 14 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 34 |   | serf0.5 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 35 | 3, 1, 34 | serf 10575 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | 
| 36 | 35 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) | 
| 37 | 3 | uztrn2 9619 | 
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) | 
| 38 | 21, 26, 37 | syl2an2r 595 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍) | 
| 39 | 36, 38 | ffvelcdmd 5698 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ) | 
| 40 | 3 | uztrn2 9619 | 
. . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) | 
| 41 | 9, 40 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) | 
| 42 | 36, 41 | ffvelcdmd 5698 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ) | 
| 43 | 39, 42 | abssubd 11358 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) | 
| 44 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑘 ∈ ℤ) | 
| 45 | 44 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℤ) | 
| 46 | 45 | zcnd 9449 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℂ) | 
| 47 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ | 
| 48 |   | npcan 8235 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 −
1) + 1) = 𝑘) | 
| 49 | 46, 47, 48 | sylancl 413 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘) | 
| 50 | 49 | fveq2d 5562 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘)) | 
| 51 | 50 | oveq2d 5938 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) | 
| 52 | 51 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))) | 
| 53 | 1 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑀 ∈ ℤ) | 
| 54 |   | eluzp1p1 9627 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 55 | 22, 54 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 56 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) | 
| 57 | 56 | uztrn2 9619 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) | 
| 58 | 55, 57 | sylan 283 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) | 
| 59 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑎 → (𝐹‘𝑘) = (𝐹‘𝑎)) | 
| 60 | 59 | eleq1d 2265 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑎 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑎) ∈ ℂ)) | 
| 61 | 34 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | 
| 62 | 61 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | 
| 63 |   | simpr 110 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) | 
| 64 | 63, 3 | eleqtrrdi 2290 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ 𝑍) | 
| 65 | 60, 62, 64 | rspcdva 2873 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑎) ∈ ℂ) | 
| 66 |   | addcl 8004 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ) | 
| 67 | 66 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ) | 
| 68 | 53, 58, 65, 67 | seq3m1 10565 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) | 
| 69 | 68 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) | 
| 70 | 34 | adantlr 477 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 71 | 41, 70 | syldan 282 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℂ) | 
| 72 | 39, 71 | pncan2d 8339 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹‘𝑘)) | 
| 73 | 69, 72 | eqtr2d 2230 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) | 
| 74 | 73 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (abs‘(𝐹‘𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) | 
| 75 | 43, 52, 74 | 3eqtr4d 2239 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹‘𝑘))) | 
| 76 | 75 | breq1d 4043 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 77 | 33, 76 | sylibd 149 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 78 | 77 | ralrimdva 2577 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 79 | 20, 78 | syl5 32 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 80 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑗 + 1))) | 
| 81 | 80 | raleqdv 2699 | 
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 82 | 81 | rspcev 2868 | 
. . . . . 6
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) | 
| 83 | 9, 79, 82 | syl6an 1445 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 84 | 83 | rexlimdva 2614 | 
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 85 | 84 | ralimdv 2565 | 
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 86 | 7, 85 | mpd 13 | 
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) | 
| 87 |   | serf0.3 | 
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) | 
| 88 |   | eqidd 2197 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 89 | 3, 1, 87, 88, 34 | clim0c 11451 | 
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 90 | 86, 89 | mpbird 167 | 
1
⊢ (𝜑 → 𝐹 ⇝ 0) |