ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serf0 GIF version

Theorem serf0 11293
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serf0.2 (𝜑𝑀 ∈ ℤ)
serf0.3 (𝜑𝐹𝑉)
serf0.4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
serf0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serf0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serf0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serf0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serf0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 11292 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 409 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
63cau3 11057 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
75, 6sylib 121 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥))
83peano2uzs 9522 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 275 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 9475 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 9480 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 9521 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5486 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1)))
1413oveq2d 5858 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))
1514fveq2d 5490 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))))
1615breq1d 3992 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2826 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
1918adantld 276 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2527 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)
21 simpr 109 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3eleqtrdi 2259 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 9475 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 9489 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 281 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5486 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1)))
28 fvoveq1 5865 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))
2927, 28oveq12d 5860 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))
3029fveq2d 5490 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))))
3130breq1d 3992 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3231rspcv 2826 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
3326, 32syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥))
34 serf0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
353, 1, 34serf 10409 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
3635ad2antrr 480 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ)
373uztrn2 9483 . . . . . . . . . . . . . 14 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3821, 26, 37syl2an2r 585 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
3936, 38ffvelrnd 5621 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ)
403uztrn2 9483 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
419, 40sylan 281 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4236, 41ffvelrnd 5621 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ)
4339, 42abssubd 11135 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
44 eluzelz 9475 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4544adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4645zcnd 9314 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
47 ax-1cn 7846 . . . . . . . . . . . . . . 15 1 ∈ ℂ
48 npcan 8107 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
4946, 47, 48sylancl 410 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5049fveq2d 5490 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘))
5150oveq2d 5858 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))
5251fveq2d 5490 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))))
531ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
54 eluzp1p1 9491 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5522, 54syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
56 eqid 2165 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5756uztrn2 9483 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
5855, 57sylan 281 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
59 fveq2 5486 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6059eleq1d 2235 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6134ralrimiva 2539 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6261ad3antrrr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
63 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3eleqtrrdi 2260 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6560, 62, 64rspcdva 2835 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
66 addcl 7878 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
6766adantl 275 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
6853, 58, 65, 67seq3m1 10403 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)))
6968oveq1d 5857 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
7034adantlr 469 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7141, 70syldan 280 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7239, 71pncan2d 8211 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹𝑘))
7369, 72eqtr2d 2199 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))
7473fveq2d 5490 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))))
7543, 52, 743eqtr4d 2208 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
7675breq1d 3992 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
7733, 76sylibd 148 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
7877ralrimdva 2546 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
7920, 78syl5 32 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
80 fveq2 5486 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8180raleqdv 2667 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8281rspcev 2830 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
839, 79, 82syl6an 1422 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8483rexlimdva 2583 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8584ralimdv 2534 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
867, 85mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
87 serf0.3 . . 3 (𝜑𝐹𝑉)
88 eqidd 2166 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
893, 1, 87, 88, 34clim0c 11227 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9086, 89mpbird 166 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wrex 2445   class class class wbr 3982  dom cdm 4604  wf 5184  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cmin 8069  cz 9191  cuz 9466  +crp 9589  seqcseq 10380  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  mertenslem2  11477
  Copyright terms: Public domain W3C validator