| Step | Hyp | Ref
| Expression |
| 1 | | serf0.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | | serf0.4 |
. . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 3 | | climcauc.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | 3 | climcaucn 11533 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 5 | 1, 2, 4 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 6 | 3 | cau3 11297 |
. . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
| 7 | 5, 6 | sylib 122 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) |
| 8 | 3 | peano2uzs 9675 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
| 9 | 8 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
| 10 | | eluzelz 9627 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) |
| 11 | | uzid 9632 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) |
| 12 | | peano2uz 9674 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑚) → (𝑚 + 1) ∈
(ℤ≥‘𝑚)) |
| 13 | | fveq2 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1))) |
| 14 | 13 | oveq2d 5941 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) |
| 15 | 14 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))) |
| 16 | 15 | breq1d 4044 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 17 | 16 | rspcv 2864 |
. . . . . . . . . 10
⊢ ((𝑚 + 1) ∈
(ℤ≥‘𝑚) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 18 | 10, 11, 12, 17 | 4syl 18 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 19 | 18 | adantld 278 |
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) |
| 20 | 19 | ralimia 2558 |
. . . . . . 7
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥) |
| 21 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 22 | 21, 3 | eleqtrdi 2289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 23 | | eluzelz 9627 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
| 25 | | eluzp1m1 9642 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
| 26 | 24, 25 | sylan 283 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) |
| 27 | | fveq2 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1))) |
| 28 | | fvoveq1 5948 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) |
| 29 | 27, 28 | oveq12d 5943 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) |
| 30 | 29 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))) |
| 31 | 30 | breq1d 4044 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 32 | 31 | rspcv 2864 |
. . . . . . . . . 10
⊢ ((𝑘 − 1) ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 33 | 26, 32 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) |
| 34 | | serf0.5 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 35 | 3, 1, 34 | serf 10592 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 36 | 35 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 37 | 3 | uztrn2 9636 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) |
| 38 | 21, 26, 37 | syl2an2r 595 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍) |
| 39 | 36, 38 | ffvelcdmd 5701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ) |
| 40 | 3 | uztrn2 9636 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
| 41 | 9, 40 | sylan 283 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
| 42 | 36, 41 | ffvelcdmd 5701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ) |
| 43 | 39, 42 | abssubd 11375 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
| 44 | | eluzelz 9627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑘 ∈ ℤ) |
| 45 | 44 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℤ) |
| 46 | 45 | zcnd 9466 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℂ) |
| 47 | | ax-1cn 7989 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 48 | | npcan 8252 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 −
1) + 1) = 𝑘) |
| 49 | 46, 47, 48 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘) |
| 50 | 49 | fveq2d 5565 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘)) |
| 51 | 50 | oveq2d 5941 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) |
| 52 | 51 | fveq2d 5565 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))) |
| 53 | 1 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑀 ∈ ℤ) |
| 54 | | eluzp1p1 9644 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 55 | 22, 54 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 56 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
| 57 | 56 | uztrn2 9636 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
| 58 | 55, 57 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) |
| 59 | | fveq2 5561 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑎 → (𝐹‘𝑘) = (𝐹‘𝑎)) |
| 60 | 59 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑎 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑎) ∈ ℂ)) |
| 61 | 34 | ralrimiva 2570 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 62 | 61 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 63 | | simpr 110 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) |
| 64 | 63, 3 | eleqtrrdi 2290 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ 𝑍) |
| 65 | 60, 62, 64 | rspcdva 2873 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑎) ∈ ℂ) |
| 66 | | addcl 8021 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ) |
| 67 | 66 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ) |
| 68 | 53, 58, 65, 67 | seq3m1 10582 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) |
| 69 | 68 | oveq1d 5940 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
| 70 | 34 | adantlr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 71 | 41, 70 | syldan 282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
| 72 | 39, 71 | pncan2d 8356 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹‘𝑘)) |
| 73 | 69, 72 | eqtr2d 2230 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) |
| 74 | 73 | fveq2d 5565 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (abs‘(𝐹‘𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) |
| 75 | 43, 52, 74 | 3eqtr4d 2239 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹‘𝑘))) |
| 76 | 75 | breq1d 4044 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
| 77 | 33, 76 | sylibd 149 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹‘𝑘)) < 𝑥)) |
| 78 | 77 | ralrimdva 2577 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 79 | 20, 78 | syl5 32 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 80 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑗 + 1))) |
| 81 | 80 | raleqdv 2699 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 82 | 81 | rspcev 2868 |
. . . . . 6
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
| 83 | 9, 79, 82 | syl6an 1445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 84 | 83 | rexlimdva 2614 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 85 | 84 | ralimdv 2565 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 86 | 7, 85 | mpd 13 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) |
| 87 | | serf0.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 88 | | eqidd 2197 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 89 | 3, 1, 87, 88, 34 | clim0c 11468 |
. 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) |
| 90 | 86, 89 | mpbird 167 |
1
⊢ (𝜑 → 𝐹 ⇝ 0) |