Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumparts GIF version

Theorem fsumparts 11349
 Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
fsumparts.c (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
fsumparts.d (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
fsumparts.e (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
fsumparts.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumparts.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumparts.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
Assertion
Ref Expression
fsumparts (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑗,𝑉   𝑘,𝑊   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)   𝑉(𝑘)   𝑊(𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑗)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 11267 . . . 4 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = 0
2 0m0e0 8928 . . . 4 (0 − 0) = 0
31, 2eqtr4i 2181 . . 3 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = (0 − 0)
4 simpr 109 . . . . . 6 ((𝜑𝑁 = 𝑀) → 𝑁 = 𝑀)
54oveq2d 5834 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
6 fzo0 10049 . . . . 5 (𝑀..^𝑀) = ∅
75, 6eqtrdi 2206 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
87sumeq1d 11245 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)))
9 fsumparts.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzfz1 9915 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
119, 10syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
12 eqtr3 2177 . . . . . . . . . . . 12 ((𝑘 = 𝑀𝑁 = 𝑀) → 𝑘 = 𝑁)
13 fsumparts.e . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
14 oveq12 5827 . . . . . . . . . . . 12 ((𝐴 = 𝐸𝑉 = 𝑍) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
1512, 13, 143syl 17 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
16 fsumparts.d . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
17 oveq12 5827 . . . . . . . . . . . . 13 ((𝐴 = 𝐷𝑉 = 𝑌) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1816, 17syl 14 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1918adantr 274 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
2015, 19eqeq12d 2172 . . . . . . . . . 10 ((𝑘 = 𝑀𝑁 = 𝑀) → ((𝐴 · 𝑉) = (𝐴 · 𝑉) ↔ (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2120pm5.74da 440 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉)) ↔ (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌))))
22 eqidd 2158 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉))
2321, 22vtoclg 2772 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2423imp 123 . . . . . . 7 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2511, 24sylan 281 . . . . . 6 ((𝜑𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2625oveq1d 5833 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = ((𝐷 · 𝑌) − (𝐷 · 𝑌)))
2716simpld 111 . . . . . . . . . 10 (𝑘 = 𝑀𝐴 = 𝐷)
2827eleq1d 2226 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
29 fsumparts.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3029ralrimiva 2530 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
3128, 30, 11rspcdva 2821 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3216simprd 113 . . . . . . . . . 10 (𝑘 = 𝑀𝑉 = 𝑌)
3332eleq1d 2226 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑉 ∈ ℂ ↔ 𝑌 ∈ ℂ))
34 fsumparts.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
3534ralrimiva 2530 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ)
3633, 35, 11rspcdva 2821 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
3731, 36mulcld 7881 . . . . . . 7 (𝜑 → (𝐷 · 𝑌) ∈ ℂ)
3837subidd 8157 . . . . . 6 (𝜑 → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
3938adantr 274 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
4026, 39eqtrd 2190 . . . 4 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = 0)
417sumeq1d 11245 . . . . 5 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋))
42 sum0 11267 . . . . 5 Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋) = 0
4341, 42eqtrdi 2206 . . . 4 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = 0)
4440, 43oveq12d 5836 . . 3 ((𝜑𝑁 = 𝑀) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (0 − 0))
453, 8, 443eqtr4a 2216 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
46 eluzel2 9427 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
479, 46syl 14 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
4847adantr 274 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
4948peano2zd 9272 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℤ)
50 eluzelz 9431 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
519, 50syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
5251adantr 274 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
53 fzofig 10313 . . . . . . . . 9 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1)..^𝑁) ∈ Fin)
5449, 52, 53syl2anc 409 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ∈ Fin)
55 uzid 9436 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
56 peano2uz 9477 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
57 fzoss1 10052 . . . . . . . . . . 11 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
5848, 55, 56, 574syl 18 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
5958sselda 3128 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀..^𝑁))
60 elfzofz 10043 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
6129, 34mulcld 7881 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6260, 61sylan2 284 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6362adantlr 469 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6459, 63syldan 280 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6554, 64fsumcl 11279 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) ∈ ℂ)
6613simpld 111 . . . . . . . . . . 11 (𝑘 = 𝑁𝐴 = 𝐸)
6766eleq1d 2226 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
68 eluzfz2 9916 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
699, 68syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝑀...𝑁))
7067, 30, 69rspcdva 2821 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
7113simprd 113 . . . . . . . . . . 11 (𝑘 = 𝑁𝑉 = 𝑍)
7271eleq1d 2226 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑉 ∈ ℂ ↔ 𝑍 ∈ ℂ))
7372, 35, 69rspcdva 2821 . . . . . . . . 9 (𝜑𝑍 ∈ ℂ)
7470, 73mulcld 7881 . . . . . . . 8 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
7574adantr 274 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐸 · 𝑍) ∈ ℂ)
76 simpr 109 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
77 fzp1ss 9957 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7848, 77syl 14 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7978sselda 3128 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
8061adantlr 469 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
8179, 80syldan 280 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
8213, 14syl 14 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 · 𝑉) = (𝐸 · 𝑍))
8376, 81, 82fsumm1 11295 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
84 fzoval 10029 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8552, 84syl 14 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8648zcnd 9270 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
87 ax-1cn 7808 . . . . . . . . . . . . 13 1 ∈ ℂ
88 pncan 8064 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
8986, 87, 88sylancl 410 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1) − 1) = 𝑀)
9089oveq1d 5833 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
9185, 90eqtr4d 2193 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (((𝑀 + 1) − 1)...(𝑁 − 1)))
9291sumeq1d 11245 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
93 1zzd 9177 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
94 fsumparts.c . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
95 oveq12 5827 . . . . . . . . . . 11 ((𝐴 = 𝐶𝑉 = 𝑋) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
9694, 95syl 14 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
9793, 49, 52, 81, 96fsumshftm 11324 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
9892, 97eqtr4d 2193 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉))
99 fzoval 10029 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
10052, 99syl 14 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
101100sumeq1d 11245 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉))
102101oveq1d 5833 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
10383, 98, 1023eqtr4d 2200 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)))
10465, 75, 103comraddd 8015 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
105104oveq1d 5833 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
106 fzofzp1 10108 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
10794simpld 111 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
108107eleq1d 2226 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
109108rspccva 2815 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
11030, 106, 109syl2an 287 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
111 elfzofz 10043 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
112 fsumparts.b . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
113112simpld 111 . . . . . . . . . . . 12 (𝑘 = 𝑗𝐴 = 𝐵)
114113eleq1d 2226 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
115114rspccva 2815 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
11630, 111, 115syl2an 287 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
11794simprd 113 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝑉 = 𝑋)
118117eleq1d 2226 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝑉 ∈ ℂ ↔ 𝑋 ∈ ℂ))
119118rspccva 2815 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝑋 ∈ ℂ)
12035, 106, 119syl2an 287 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
121110, 116, 120subdird 8273 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐶𝐵) · 𝑋) = ((𝐶 · 𝑋) − (𝐵 · 𝑋)))
122121sumeq2dv 11247 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)))
123 fzofig 10313 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
12447, 51, 123syl2anc 409 . . . . . . . 8 (𝜑 → (𝑀..^𝑁) ∈ Fin)
125110, 120mulcld 7881 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
126116, 120mulcld 7881 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑋) ∈ ℂ)
127124, 125, 126fsumsub 11331 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
128122, 127eqtrd 2190 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
129128adantr 274 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
130124, 126fsumcl 11279 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
131130adantr 274 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
13275, 131, 65subsub3d 8199 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
133105, 129, 1323eqtr4d 2200 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))))
134133oveq2d 5834 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))))
13537adantr 274 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 · 𝑌) ∈ ℂ)
136131, 65subcld 8169 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) ∈ ℂ)
13775, 135, 136nnncan1d 8203 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))) = ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)))
13865, 135addcomd 8009 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
139 eluzp1m1 9445 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14047, 139sylan 281 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14185eleq2d 2227 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝑘 ∈ (𝑀...(𝑁 − 1))))
142141biimpar 295 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
143142, 63syldan 280 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐴 · 𝑉) ∈ ℂ)
144140, 143, 18fsum1p 11297 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
14585sumeq1d 11245 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉))
146101oveq2d 5834 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
147144, 145, 1463eqtr4d 2200 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
148138, 147eqtr4d 2193 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉))
149 oveq12 5827 . . . . . . . 8 ((𝐴 = 𝐵𝑉 = 𝑊) → (𝐴 · 𝑉) = (𝐵 · 𝑊))
150112, 149syl 14 . . . . . . 7 (𝑘 = 𝑗 → (𝐴 · 𝑉) = (𝐵 · 𝑊))
151150cbvsumv 11240 . . . . . 6 Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)
152148, 151eqtrdi 2206 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))
153152oveq2d 5834 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
154131, 65, 135subsub4d 8200 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))))
155112simprd 113 . . . . . . . . . . 11 (𝑘 = 𝑗𝑉 = 𝑊)
156155eleq1d 2226 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑉 ∈ ℂ ↔ 𝑊 ∈ ℂ))
157156rspccva 2815 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑊 ∈ ℂ)
15835, 111, 157syl2an 287 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑊 ∈ ℂ)
159116, 120, 158subdid 8272 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · (𝑋𝑊)) = ((𝐵 · 𝑋) − (𝐵 · 𝑊)))
160159sumeq2dv 11247 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)))
161116, 158mulcld 7881 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑊) ∈ ℂ)
162124, 126, 161fsumsub 11331 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
163160, 162eqtrd 2190 . . . . 5 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
164163adantr 274 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
165153, 154, 1643eqtr4d 2200 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)))
166134, 137, 1653eqtrrd 2195 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
167 uzp1 9455 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1689, 167syl 14 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
16945, 166, 168mpjaodan 788 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 698   = wceq 1335   ∈ wcel 2128  ∀wral 2435   ⊆ wss 3102  ∅c0 3394  ‘cfv 5167  (class class class)co 5818  Fincfn 6678  ℂcc 7713  0cc0 7715  1c1 7716   + caddc 7718   · cmul 7720   − cmin 8029  ℤcz 9150  ℤ≥cuz 9422  ...cfz 9894  ..^cfzo 10023  Σcsu 11232 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator