ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul12b GIF version

Theorem lemul12b 8849
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12b ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12b
StepHypRef Expression
1 lemul2a 8847 . . . . . . . . 9 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷))
21ex 115 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
323comr 1213 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
433expb 1206 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
54adantrrr 487 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
65adantlr 477 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐶𝐷 → (𝐴 · 𝐶) ≤ (𝐴 · 𝐷)))
7 lemul1a 8846 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) ∧ 𝐴𝐵) → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))
87ex 115 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
983expa 1205 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
109adantllr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
1110adantrl 478 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴𝐵 → (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)))
126, 11anim12d 335 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐶𝐷𝐴𝐵) → ((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))))
1312ancomsd 269 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → ((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷))))
14 remulcl 7970 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1514adantlr 477 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1615ad2ant2r 509 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴 · 𝐶) ∈ ℝ)
17 remulcl 7970 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐴 · 𝐷) ∈ ℝ)
1817ad2ant2r 509 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐴 · 𝐷) ∈ ℝ)
1918ad2ant2rl 511 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐴 · 𝐷) ∈ ℝ)
20 remulcl 7970 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
2120adantrr 479 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) → (𝐵 · 𝐷) ∈ ℝ)
2221ad2ant2l 508 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (𝐵 · 𝐷) ∈ ℝ)
23 letr 8071 . . 3 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐴 · 𝐷) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
2416, 19, 22, 23syl3anc 1249 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐴 · 𝐷) ∧ (𝐴 · 𝐷) ≤ (𝐵 · 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
2513, 24syld 45 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2160   class class class wbr 4018  (class class class)co 5897  cr 7841  0cc0 7842   · cmul 7847  cle 8024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570
This theorem is referenced by:  lemul12a  8850  lemul12bd  8931
  Copyright terms: Public domain W3C validator