| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1000 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| 2 | | simp1 999 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ Fin) |
| 3 | | simp3 1001 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) |
| 4 | | sseq1 3206 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 5 | 4 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) ↔ (𝐴 ∈ Fin ∧ ∅ ⊆ 𝐴))) |
| 6 | | difeq2 3275 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝐴 ∖ 𝑤) = (𝐴 ∖ ∅)) |
| 7 | 6 | eleq1d 2265 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝐴 ∖ 𝑤) ∈ Fin ↔ (𝐴 ∖ ∅) ∈
Fin)) |
| 8 | 5, 7 | imbi12d 234 |
. . . 4
⊢ (𝑤 = ∅ → (((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) → (𝐴 ∖ 𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ ∅ ⊆ 𝐴) → (𝐴 ∖ ∅) ∈
Fin))) |
| 9 | | sseq1 3206 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) |
| 10 | 9 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) ↔ (𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴))) |
| 11 | | difeq2 3275 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝑦)) |
| 12 | 11 | eleq1d 2265 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝐴 ∖ 𝑤) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 13 | 10, 12 | imbi12d 234 |
. . . 4
⊢ (𝑤 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) → (𝐴 ∖ 𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin))) |
| 14 | | sseq1 3206 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) |
| 15 | 14 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) ↔ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴))) |
| 16 | | difeq2 3275 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴 ∖ 𝑤) = (𝐴 ∖ (𝑦 ∪ {𝑧}))) |
| 17 | 16 | eleq1d 2265 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴 ∖ 𝑤) ∈ Fin ↔ (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 18 | 15, 17 | imbi12d 234 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) → (𝐴 ∖ 𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin))) |
| 19 | | sseq1 3206 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
| 20 | 19 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) ↔ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴))) |
| 21 | | difeq2 3275 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ∖ 𝑤) = (𝐴 ∖ 𝐵)) |
| 22 | 21 | eleq1d 2265 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ∖ 𝑤) ∈ Fin ↔ (𝐴 ∖ 𝐵) ∈ Fin)) |
| 23 | 20, 22 | imbi12d 234 |
. . . 4
⊢ (𝑤 = 𝐵 → (((𝐴 ∈ Fin ∧ 𝑤 ⊆ 𝐴) → (𝐴 ∖ 𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin))) |
| 24 | | dif0 3521 |
. . . . . . 7
⊢ (𝐴 ∖ ∅) = 𝐴 |
| 25 | 24 | eleq1i 2262 |
. . . . . 6
⊢ ((𝐴 ∖ ∅) ∈ Fin
↔ 𝐴 ∈
Fin) |
| 26 | 25 | biimpri 133 |
. . . . 5
⊢ (𝐴 ∈ Fin → (𝐴 ∖ ∅) ∈
Fin) |
| 27 | 26 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ ∅
⊆ 𝐴) → (𝐴 ∖ ∅) ∈
Fin) |
| 28 | | difun1 3423 |
. . . . . 6
⊢ (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴 ∖ 𝑦) ∖ {𝑧}) |
| 29 | | simprl 529 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐴 ∈ Fin) |
| 30 | | simprr 531 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 31 | 30 | unssad 3340 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦 ⊆ 𝐴) |
| 32 | | simplr 528 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) |
| 33 | 29, 31, 32 | mp2and 433 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐴 ∖ 𝑦) ∈ Fin) |
| 34 | | vsnid 3654 |
. . . . . . . . . 10
⊢ 𝑧 ∈ {𝑧} |
| 35 | | simprr 531 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 36 | 35 | unssbd 3341 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) |
| 37 | 36 | sseld 3182 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑧 ∈ {𝑧} → 𝑧 ∈ 𝐴)) |
| 38 | 34, 37 | mpi 15 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
| 39 | 38 | adantllr 481 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
| 40 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑦) |
| 41 | 39, 40 | eldifd 3167 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 42 | | diffisn 6954 |
. . . . . . 7
⊢ (((𝐴 ∖ 𝑦) ∈ Fin ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → ((𝐴 ∖ 𝑦) ∖ {𝑧}) ∈ Fin) |
| 43 | 33, 41, 42 | syl2anc 411 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐴 ∖ 𝑦) ∖ {𝑧}) ∈ Fin) |
| 44 | 28, 43 | eqeltrid 2283 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin) |
| 45 | 44 | exp31 364 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → (𝐴 ∖ 𝑦) ∈ Fin) → ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin))) |
| 46 | 8, 13, 18, 23, 27, 45 | findcard2s 6951 |
. . 3
⊢ (𝐵 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin)) |
| 47 | 46 | imp 124 |
. 2
⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (𝐴 ∖ 𝐵) ∈ Fin) |
| 48 | 1, 2, 3, 47 | syl12anc 1247 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) |