ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi GIF version

Theorem diffifi 6852
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)

Proof of Theorem diffifi
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 987 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 simp1 986 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ∈ Fin)
3 simp3 988 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
4 sseq1 3161 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
54anbi2d 460 . . . . 5 (𝑤 = ∅ → ((𝐴 ∈ Fin ∧ 𝑤𝐴) ↔ (𝐴 ∈ Fin ∧ ∅ ⊆ 𝐴)))
6 difeq2 3230 . . . . . 6 (𝑤 = ∅ → (𝐴𝑤) = (𝐴 ∖ ∅))
76eleq1d 2233 . . . . 5 (𝑤 = ∅ → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin))
85, 7imbi12d 233 . . . 4 (𝑤 = ∅ → (((𝐴 ∈ Fin ∧ 𝑤𝐴) → (𝐴𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ ∅ ⊆ 𝐴) → (𝐴 ∖ ∅) ∈ Fin)))
9 sseq1 3161 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
109anbi2d 460 . . . . 5 (𝑤 = 𝑦 → ((𝐴 ∈ Fin ∧ 𝑤𝐴) ↔ (𝐴 ∈ Fin ∧ 𝑦𝐴)))
11 difeq2 3230 . . . . . 6 (𝑤 = 𝑦 → (𝐴𝑤) = (𝐴𝑦))
1211eleq1d 2233 . . . . 5 (𝑤 = 𝑦 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
1310, 12imbi12d 233 . . . 4 (𝑤 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝑤𝐴) → (𝐴𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)))
14 sseq1 3161 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1514anbi2d 460 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴 ∈ Fin ∧ 𝑤𝐴) ↔ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
16 difeq2 3230 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐴𝑤) = (𝐴 ∖ (𝑦 ∪ {𝑧})))
1716eleq1d 2233 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐴𝑤) ∈ Fin ↔ (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin))
1815, 17imbi12d 233 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝑤𝐴) → (𝐴𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin)))
19 sseq1 3161 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
2019anbi2d 460 . . . . 5 (𝑤 = 𝐵 → ((𝐴 ∈ Fin ∧ 𝑤𝐴) ↔ (𝐴 ∈ Fin ∧ 𝐵𝐴)))
21 difeq2 3230 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
2221eleq1d 2233 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ Fin ↔ (𝐴𝐵) ∈ Fin))
2320, 22imbi12d 233 . . . 4 (𝑤 = 𝐵 → (((𝐴 ∈ Fin ∧ 𝑤𝐴) → (𝐴𝑤) ∈ Fin) ↔ ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)))
24 dif0 3475 . . . . . . 7 (𝐴 ∖ ∅) = 𝐴
2524eleq1i 2230 . . . . . 6 ((𝐴 ∖ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
2625biimpri 132 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∖ ∅) ∈ Fin)
2726adantr 274 . . . 4 ((𝐴 ∈ Fin ∧ ∅ ⊆ 𝐴) → (𝐴 ∖ ∅) ∈ Fin)
28 difun1 3378 . . . . . 6 (𝐴 ∖ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∖ {𝑧})
29 simprl 521 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐴 ∈ Fin)
30 simprr 522 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3130unssad 3295 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦𝐴)
32 simplr 520 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin))
3329, 31, 32mp2and 430 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐴𝑦) ∈ Fin)
34 vsnid 3603 . . . . . . . . . 10 𝑧 ∈ {𝑧}
35 simprr 522 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3635unssbd 3296 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
3736sseld 3137 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑧 ∈ {𝑧} → 𝑧𝐴))
3834, 37mpi 15 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
3938adantllr 473 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
40 simpllr 524 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
4139, 40eldifd 3122 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ (𝐴𝑦))
42 diffisn 6851 . . . . . . 7 (((𝐴𝑦) ∈ Fin ∧ 𝑧 ∈ (𝐴𝑦)) → ((𝐴𝑦) ∖ {𝑧}) ∈ Fin)
4333, 41, 42syl2anc 409 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((𝐴𝑦) ∖ {𝑧}) ∈ Fin)
4428, 43eqeltrid 2251 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin)) ∧ (𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin)
4544exp31 362 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝐴 ∈ Fin ∧ 𝑦𝐴) → (𝐴𝑦) ∈ Fin) → ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝐴 ∖ (𝑦 ∪ {𝑧})) ∈ Fin)))
468, 13, 18, 23, 27, 45findcard2s 6848 . . 3 (𝐵 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin))
4746imp 123 . 2 ((𝐵 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (𝐴𝐵) ∈ Fin)
481, 2, 3, 47syl12anc 1225 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135  cdif 3109  cun 3110  wss 3112  c0 3405  {csn 3571  Fincfn 6698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-on 4341  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-er 6493  df-en 6699  df-fin 6701
This theorem is referenced by:  unfiin  6883  fihashssdif  10721  hashdifpr  10723  fsumlessfi  11391  hash2iun1dif1  11411
  Copyright terms: Public domain W3C validator