ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemur GIF version

Theorem ivthinclemur 15298
Description: Lemma for ivthinc 15302. The upper cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑤   𝑥,𝐴,𝑦,𝑞   𝐵,𝑞,𝑤   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝑅,𝑞,𝑥,𝑦   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝑤,𝑟
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑟)   𝐵(𝑟)   𝐷(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑅(𝑤,𝑟)   𝑈(𝑥,𝑦,𝑟,𝑞)   𝐹(𝑟,𝑞)   𝐿(𝑥,𝑦,𝑤,𝑟,𝑞)

Proof of Theorem ivthinclemur
StepHypRef Expression
1 ivth.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
21ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝐴 ∈ ℝ)
3 ivth.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
43ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝐵 ∈ ℝ)
5 ivth.3 . . . . . 6 (𝜑𝑈 ∈ ℝ)
65ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝑈 ∈ ℝ)
7 ivth.4 . . . . . 6 (𝜑𝐴 < 𝐵)
87ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝐴 < 𝐵)
9 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
109ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → (𝐴[,]𝐵) ⊆ 𝐷)
11 ivth.7 . . . . . 6 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1211ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝐹 ∈ (𝐷cn→ℂ))
13 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1413adantlr 477 . . . . . 6 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 477 . . . . 5 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . 6 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716ad2antrr 488 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
18 ivthinc.i . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
1918adantllr 481 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
2019adantllr 481 . . . . 5 (((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
21 ivthinclem.l . . . . 5 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
22 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
23 simpr 110 . . . . 5 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → 𝑟𝑅)
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemuopn 15297 . . . 4 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝑅) → ∃𝑞𝑅 𝑞 < 𝑟)
2524ex 115 . . 3 ((𝜑𝑟 ∈ (𝐴[,]𝐵)) → (𝑟𝑅 → ∃𝑞𝑅 𝑞 < 𝑟))
26 simpllr 534 . . . . 5 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵))
275ad3antrrr 492 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ)
28 fveq2 5623 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
2928eleq1d 2298 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑞) ∈ ℝ))
3013ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3130ad3antrrr 492 . . . . . . 7 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
32 fveq2 5623 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝐹𝑤) = (𝐹𝑞))
3332breq2d 4094 . . . . . . . . . 10 (𝑤 = 𝑞 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑞)))
3433, 22elrab2 2962 . . . . . . . . 9 (𝑞𝑅 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑞)))
3534simplbi 274 . . . . . . . 8 (𝑞𝑅𝑞 ∈ (𝐴[,]𝐵))
3635ad2antlr 489 . . . . . . 7 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵))
3729, 31, 36rspcdva 2912 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → (𝐹𝑞) ∈ ℝ)
38 fveq2 5623 . . . . . . . 8 (𝑥 = 𝑟 → (𝐹𝑥) = (𝐹𝑟))
3938eleq1d 2298 . . . . . . 7 (𝑥 = 𝑟 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑟) ∈ ℝ))
4039, 31, 26rspcdva 2912 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → (𝐹𝑟) ∈ ℝ)
4134simprbi 275 . . . . . . 7 (𝑞𝑅𝑈 < (𝐹𝑞))
4241ad2antlr 489 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑈 < (𝐹𝑞))
43 simpr 110 . . . . . . 7 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟)
44 breq2 4086 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 < 𝑦𝑞 < 𝑟))
45 fveq2 5623 . . . . . . . . . 10 (𝑦 = 𝑟 → (𝐹𝑦) = (𝐹𝑟))
4645breq2d 4094 . . . . . . . . 9 (𝑦 = 𝑟 → ((𝐹𝑞) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑟)))
4744, 46imbi12d 234 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)) ↔ (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟))))
48 breq1 4085 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 < 𝑦𝑞 < 𝑦))
4928breq1d 4092 . . . . . . . . . . 11 (𝑥 = 𝑞 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑦)))
5048, 49imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
5150ralbidv 2530 . . . . . . . . 9 (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
5218expr 375 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5352ralrimiva 2603 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5453ralrimiva 2603 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5554ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5651, 55, 36rspcdva 2912 . . . . . . . 8 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)))
5747, 56, 26rspcdva 2912 . . . . . . 7 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟)))
5843, 57mpd 13 . . . . . 6 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < (𝐹𝑟))
5927, 37, 40, 42, 58lttrd 8260 . . . . 5 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑈 < (𝐹𝑟))
60 fveq2 5623 . . . . . . 7 (𝑤 = 𝑟 → (𝐹𝑤) = (𝐹𝑟))
6160breq2d 4094 . . . . . 6 (𝑤 = 𝑟 → (𝑈 < (𝐹𝑤) ↔ 𝑈 < (𝐹𝑟)))
6261, 22elrab2 2962 . . . . 5 (𝑟𝑅 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹𝑟)))
6326, 59, 62sylanbrc 417 . . . 4 ((((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝑅) ∧ 𝑞 < 𝑟) → 𝑟𝑅)
6463rexlimdva2 2651 . . 3 ((𝜑𝑟 ∈ (𝐴[,]𝐵)) → (∃𝑞𝑅 𝑞 < 𝑟𝑟𝑅))
6525, 64impbid 129 . 2 ((𝜑𝑟 ∈ (𝐴[,]𝐵)) → (𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
6665ralrimiva 2603 1 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197   class class class wbr 4082  cfv 5314  (class class class)co 5994  cc 7985  cr 7986   < clt 8169  [,]cicc 10075  cnccncf 15229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-map 6787  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-icc 10079  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-cncf 15230
This theorem is referenced by:  ivthinclemex  15301
  Copyright terms: Public domain W3C validator