| Step | Hyp | Ref
 | Expression | 
| 1 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵) | 
| 2 | 1 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀)) | 
| 3 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶) | 
| 4 | 3 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)) | 
| 5 | 2, 4 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = ∅ → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))) | 
| 6 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) | 
| 7 | 6 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀)) | 
| 8 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ 𝑦 𝐶) | 
| 9 | 8 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) | 
| 10 | 7, 9 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = 𝑦 → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀))) | 
| 11 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵) | 
| 12 | 11 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀)) | 
| 13 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶) | 
| 14 | 13 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) | 
| 15 | 12, 14 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))) | 
| 16 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) | 
| 17 | 16 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀)) | 
| 18 |   | prodeq1 11718 | 
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ 𝐴 𝐶) | 
| 19 | 18 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) | 
| 20 | 17, 19 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = 𝐴 → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀))) | 
| 21 |   | prod0 11750 | 
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 | 
| 22 | 21 | a1i 9 | 
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1) | 
| 23 | 22 | oveq1d 5937 | 
. . 3
⊢ (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀)) | 
| 24 |   | prod0 11750 | 
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐶 =
1 | 
| 25 | 24 | eqcomi 2200 | 
. . . 4
⊢ 1 =
∏𝑘 ∈ ∅
𝐶 | 
| 26 | 25 | oveq1i 5932 | 
. . 3
⊢ (1 mod
𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀) | 
| 27 | 23, 26 | eqtrdi 2245 | 
. 2
⊢ (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)) | 
| 28 |   | nfcsb1v 3117 | 
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 | 
| 29 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) | 
| 30 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑖 ∈ (𝐴 ∖ 𝑦)) | 
| 31 |   | simprr 531 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑖 ∈ (𝐴 ∖ 𝑦)) | 
| 32 | 31 | eldifbd 3169 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑖 ∈ 𝑦) | 
| 33 | 32 | adantlr 477 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑖 ∈ 𝑦) | 
| 34 |   | simpll 527 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) | 
| 35 |   | ssel 3177 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ 𝐴 → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 36 | 35 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦)) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 37 | 36 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 38 | 37 | imp 124 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) | 
| 39 |   | fprodmodd.b | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | 
| 40 | 34, 38, 39 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℤ) | 
| 41 | 40 | zcnd 9449 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) | 
| 42 | 41 | adantllr 481 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) | 
| 43 |   | eldifi 3285 | 
. . . . . . . . . . 11
⊢ (𝑖 ∈ (𝐴 ∖ 𝑦) → 𝑖 ∈ 𝐴) | 
| 44 | 43 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦)) → 𝑖 ∈ 𝐴) | 
| 45 | 39 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) | 
| 46 |   | rspcsbela 3144 | 
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) | 
| 47 | 44, 45, 46 | syl2anr 290 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) | 
| 48 | 47 | zcnd 9449 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) | 
| 49 | 48 | adantlr 477 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) | 
| 50 |   | csbeq1a 3093 | 
. . . . . . 7
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) | 
| 51 | 28, 29, 30, 33, 42, 49, 50 | fprodunsn 11769 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵)) | 
| 52 | 51 | oveq1d 5937 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀)) | 
| 53 | 52 | adantr 276 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀)) | 
| 54 | 40 | adantllr 481 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℤ) | 
| 55 | 29, 54 | fprodzcl 11774 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℤ) | 
| 56 | 55 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℤ) | 
| 57 |   | fprodmodd.c | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) | 
| 58 | 34, 38, 57 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℤ) | 
| 59 | 58 | adantllr 481 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℤ) | 
| 60 | 29, 59 | fprodzcl 11774 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℤ) | 
| 61 | 60 | adantr 276 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℤ) | 
| 62 | 47 | ad4ant13 513 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) | 
| 63 | 57 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℤ) | 
| 64 |   | rspcsbela 3144 | 
. . . . . . 7
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℤ) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) | 
| 65 | 44, 63, 64 | syl2anr 290 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) | 
| 66 | 65 | ad4ant13 513 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) | 
| 67 |   | fprodmodd.m | 
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 68 |   | nnq 9707 | 
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) | 
| 69 | 67, 68 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℚ) | 
| 70 | 69 | ad3antrrr 492 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℚ) | 
| 71 | 67 | nngt0d 9034 | 
. . . . . 6
⊢ (𝜑 → 0 < 𝑀) | 
| 72 | 71 | ad3antrrr 492 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → 0 < 𝑀) | 
| 73 |   | simpr 110 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) | 
| 74 |   | fprodmodd.p | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) | 
| 75 | 74 | ralrimiva 2570 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) | 
| 76 |   | rspsbca 3073 | 
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀)) | 
| 77 | 44, 75, 76 | syl2anr 290 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀)) | 
| 78 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑖 ∈ V | 
| 79 |   | sbceqg 3100 | 
. . . . . . . . 9
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀))) | 
| 80 | 78, 79 | mp1i 10 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀))) | 
| 81 | 77, 80 | mpbid 147 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀)) | 
| 82 |   | csbov1g 5962 | 
. . . . . . . 8
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀)) | 
| 83 | 82 | elv 2767 | 
. . . . . . 7
⊢
⦋𝑖 /
𝑘⦌(𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) | 
| 84 |   | csbov1g 5962 | 
. . . . . . . 8
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) | 
| 85 | 84 | elv 2767 | 
. . . . . . 7
⊢
⦋𝑖 /
𝑘⦌(𝐶 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀) | 
| 86 | 81, 83, 85 | 3eqtr3g 2252 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) | 
| 87 | 86 | ad4ant13 513 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) | 
| 88 | 56, 61, 62, 66, 70, 72, 73, 87 | modqmul12d 10470 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀)) | 
| 89 |   | nfcsb1v 3117 | 
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐶 | 
| 90 | 58 | zcnd 9449 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℂ) | 
| 91 | 90 | adantllr 481 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℂ) | 
| 92 | 65 | zcnd 9449 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℂ) | 
| 93 | 92 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℂ) | 
| 94 |   | csbeq1a 3093 | 
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐶 = ⦋𝑖 / 𝑘⦌𝐶) | 
| 95 | 89, 29, 30, 33, 91, 93, 94 | fprodunsn 11769 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶)) | 
| 96 | 95 | oveq1d 5937 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀)) | 
| 97 | 96 | eqcomd 2202 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) | 
| 98 | 97 | adantr 276 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) | 
| 99 | 53, 88, 98 | 3eqtrd 2233 | 
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) | 
| 100 | 99 | ex 115 | 
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))) | 
| 101 |   | fprodmodd.a | 
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 102 | 5, 10, 15, 20, 27, 100, 101 | findcard2sd 6953 | 
1
⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |