Step | Hyp | Ref
| Expression |
1 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
2 | 1 | oveq1d 5868 |
. . 3
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀)) |
3 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = ∅ → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
4 | 3 | oveq1d 5868 |
. . 3
⊢ (𝑥 = ∅ → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)) |
5 | 2, 4 | eqeq12d 2185 |
. 2
⊢ (𝑥 = ∅ → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))) |
6 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝑦 𝐵) |
7 | 6 | oveq1d 5868 |
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀)) |
8 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ 𝑦 𝐶) |
9 | 8 | oveq1d 5868 |
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) |
10 | 7, 9 | eqeq12d 2185 |
. 2
⊢ (𝑥 = 𝑦 → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀))) |
11 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵) |
12 | 11 | oveq1d 5868 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀)) |
13 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶) |
14 | 13 | oveq1d 5868 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) |
15 | 12, 14 | eqeq12d 2185 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))) |
16 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐵 = ∏𝑘 ∈ 𝐴 𝐵) |
17 | 16 | oveq1d 5868 |
. . 3
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀)) |
18 | | prodeq1 11516 |
. . . 4
⊢ (𝑥 = 𝐴 → ∏𝑘 ∈ 𝑥 𝐶 = ∏𝑘 ∈ 𝐴 𝐶) |
19 | 18 | oveq1d 5868 |
. . 3
⊢ (𝑥 = 𝐴 → (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |
20 | 17, 19 | eqeq12d 2185 |
. 2
⊢ (𝑥 = 𝐴 → ((∏𝑘 ∈ 𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀))) |
21 | | prod0 11548 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
22 | 21 | a1i 9 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1) |
23 | 22 | oveq1d 5868 |
. . 3
⊢ (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀)) |
24 | | prod0 11548 |
. . . . 5
⊢
∏𝑘 ∈
∅ 𝐶 =
1 |
25 | 24 | eqcomi 2174 |
. . . 4
⊢ 1 =
∏𝑘 ∈ ∅
𝐶 |
26 | 25 | oveq1i 5863 |
. . 3
⊢ (1 mod
𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀) |
27 | 23, 26 | eqtrdi 2219 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)) |
28 | | nfcsb1v 3082 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
29 | | simplr 525 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) |
30 | | simprr 527 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑖 ∈ (𝐴 ∖ 𝑦)) |
31 | | simprr 527 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → 𝑖 ∈ (𝐴 ∖ 𝑦)) |
32 | 31 | eldifbd 3133 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑖 ∈ 𝑦) |
33 | 32 | adantlr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑖 ∈ 𝑦) |
34 | | simpll 524 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) |
35 | | ssel 3141 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊆ 𝐴 → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) |
36 | 35 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦)) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) |
37 | 36 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) |
38 | 37 | imp 123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) |
39 | | fprodmodd.b |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
40 | 34, 38, 39 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℤ) |
41 | 40 | zcnd 9335 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
42 | 41 | adantllr 478 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℂ) |
43 | | eldifi 3249 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (𝐴 ∖ 𝑦) → 𝑖 ∈ 𝐴) |
44 | 43 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦)) → 𝑖 ∈ 𝐴) |
45 | 39 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
46 | | rspcsbela 3108 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) |
47 | 44, 45, 46 | syl2anr 288 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) |
48 | 47 | zcnd 9335 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
49 | 48 | adantlr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
50 | | csbeq1a 3058 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
51 | 28, 29, 30, 33, 42, 49, 50 | fprodunsn 11567 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵)) |
52 | 51 | oveq1d 5868 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀)) |
53 | 52 | adantr 274 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀)) |
54 | 40 | adantllr 478 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℤ) |
55 | 29, 54 | fprodzcl 11572 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℤ) |
56 | 55 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ∏𝑘 ∈ 𝑦 𝐵 ∈ ℤ) |
57 | | fprodmodd.c |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) |
58 | 34, 38, 57 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℤ) |
59 | 58 | adantllr 478 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℤ) |
60 | 29, 59 | fprodzcl 11572 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℤ) |
61 | 60 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ∏𝑘 ∈ 𝑦 𝐶 ∈ ℤ) |
62 | 47 | ad4ant13 510 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℤ) |
63 | 57 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℤ) |
64 | | rspcsbela 3108 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℤ) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) |
65 | 44, 63, 64 | syl2anr 288 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) |
66 | 65 | ad4ant13 510 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℤ) |
67 | | fprodmodd.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
68 | | nnq 9592 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℚ) |
69 | 67, 68 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℚ) |
70 | 69 | ad3antrrr 489 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℚ) |
71 | 67 | nngt0d 8922 |
. . . . . 6
⊢ (𝜑 → 0 < 𝑀) |
72 | 71 | ad3antrrr 489 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → 0 < 𝑀) |
73 | | simpr 109 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) |
74 | | fprodmodd.p |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) |
75 | 74 | ralrimiva 2543 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) |
76 | | rspsbca 3038 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀)) |
77 | 44, 75, 76 | syl2anr 288 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀)) |
78 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑖 ∈ V |
79 | | sbceqg 3065 |
. . . . . . . . 9
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀))) |
80 | 78, 79 | mp1i 10 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀))) |
81 | 77, 80 | mpbid 146 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = ⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀)) |
82 | | csbov1g 5893 |
. . . . . . . 8
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑘⦌(𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀)) |
83 | 82 | elv 2734 |
. . . . . . 7
⊢
⦋𝑖 /
𝑘⦌(𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) |
84 | | csbov1g 5893 |
. . . . . . . 8
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑘⦌(𝐶 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) |
85 | 84 | elv 2734 |
. . . . . . 7
⊢
⦋𝑖 /
𝑘⦌(𝐶 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀) |
86 | 81, 83, 85 | 3eqtr3g 2226 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) |
87 | 86 | ad4ant13 510 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (⦋𝑖 / 𝑘⦌𝐵 mod 𝑀) = (⦋𝑖 / 𝑘⦌𝐶 mod 𝑀)) |
88 | 56, 61, 62, 66, 70, 72, 73, 87 | modqmul12d 10334 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ((∏𝑘 ∈ 𝑦 𝐵 · ⦋𝑖 / 𝑘⦌𝐵) mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀)) |
89 | | nfcsb1v 3082 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐶 |
90 | 58 | zcnd 9335 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℂ) |
91 | 90 | adantllr 478 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐶 ∈ ℂ) |
92 | 65 | zcnd 9335 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℂ) |
93 | 92 | adantlr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑖 / 𝑘⦌𝐶 ∈ ℂ) |
94 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐶 = ⦋𝑖 / 𝑘⦌𝐶) |
95 | 89, 29, 30, 33, 91, 93, 94 | fprodunsn 11567 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶)) |
96 | 95 | oveq1d 5868 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀)) |
97 | 96 | eqcomd 2176 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) |
98 | 97 | adantr 274 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → ((∏𝑘 ∈ 𝑦 𝐶 · ⦋𝑖 / 𝑘⦌𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) |
99 | 53, 88, 98 | 3eqtrd 2207 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) ∧ (∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)) |
100 | 99 | ex 114 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ (𝐴 ∖ 𝑦))) → ((∏𝑘 ∈ 𝑦 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))) |
101 | | fprodmodd.a |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
102 | 5, 10, 15, 20, 27, 100, 101 | findcard2sd 6870 |
1
⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |