ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd GIF version

Theorem fprodmodd 11681
Description: If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a (𝜑𝐴 ∈ Fin)
fprodmodd.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fprodmodd.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
fprodmodd.m (𝜑𝑀 ∈ ℕ)
fprodmodd.p ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
Assertion
Ref Expression
fprodmodd (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmodd
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11593 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21oveq1d 5911 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀))
3 prodeq1 11593 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
43oveq1d 5911 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
52, 4eqeq12d 2204 . 2 (𝑥 = ∅ → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)))
6 prodeq1 11593 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 5911 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐵 mod 𝑀))
8 prodeq1 11593 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐶 = ∏𝑘𝑦 𝐶)
98oveq1d 5911 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
107, 9eqeq12d 2204 . 2 (𝑥 = 𝑦 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)))
11 prodeq1 11593 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵)
1211oveq1d 5911 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀))
13 prodeq1 11593 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶)
1413oveq1d 5911 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
1512, 14eqeq12d 2204 . 2 (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
16 prodeq1 11593 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1716oveq1d 5911 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐵 mod 𝑀))
18 prodeq1 11593 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐶 = ∏𝑘𝐴 𝐶)
1918oveq1d 5911 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
2017, 19eqeq12d 2204 . 2 (𝑥 = 𝐴 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀)))
21 prod0 11625 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2221a1i 9 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1)
2322oveq1d 5911 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀))
24 prod0 11625 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
2524eqcomi 2193 . . . 4 1 = ∏𝑘 ∈ ∅ 𝐶
2625oveq1i 5906 . . 3 (1 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)
2723, 26eqtrdi 2238 . 2 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
28 nfcsb1v 3105 . . . . . . 7 𝑘𝑖 / 𝑘𝐵
29 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
30 simprr 531 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
31 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
3231eldifbd 3156 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
3332adantlr 477 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
34 simpll 527 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
35 ssel 3164 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
3635adantr 276 . . . . . . . . . . . 12 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
3736adantl 277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
3837imp 124 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodmodd.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
4034, 38, 39syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
4140zcnd 9406 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4241adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
43 eldifi 3272 . . . . . . . . . . 11 (𝑖 ∈ (𝐴𝑦) → 𝑖𝐴)
4443adantl 277 . . . . . . . . . 10 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖𝐴)
4539ralrimiva 2563 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
46 rspcsbela 3131 . . . . . . . . . 10 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑖 / 𝑘𝐵 ∈ ℤ)
4744, 45, 46syl2anr 290 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℤ)
4847zcnd 9406 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
4948adantlr 477 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
50 csbeq1a 3081 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5128, 29, 30, 33, 42, 49, 50fprodunsn 11644 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵))
5251oveq1d 5911 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5352adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5440adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
5529, 54fprodzcl 11649 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℤ)
5655adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐵 ∈ ℤ)
57 fprodmodd.c . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
5834, 38, 57syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
5958adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
6029, 59fprodzcl 11649 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6160adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6247ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐵 ∈ ℤ)
6357ralrimiva 2563 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℤ)
64 rspcsbela 3131 . . . . . . 7 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐶 ∈ ℤ) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6544, 63, 64syl2anr 290 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6665ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐶 ∈ ℤ)
67 fprodmodd.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
68 nnq 9663 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
6967, 68syl 14 . . . . . 6 (𝜑𝑀 ∈ ℚ)
7069ad3antrrr 492 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℚ)
7167nngt0d 8993 . . . . . 6 (𝜑 → 0 < 𝑀)
7271ad3antrrr 492 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 0 < 𝑀)
73 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
74 fprodmodd.p . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7574ralrimiva 2563 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
76 rspsbca 3061 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7744, 75, 76syl2anr 290 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
78 vex 2755 . . . . . . . . 9 𝑖 ∈ V
79 sbceqg 3088 . . . . . . . . 9 (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8078, 79mp1i 10 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8177, 80mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀))
82 csbov1g 5936 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀))
8382elv 2756 . . . . . . 7 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀)
84 csbov1g 5936 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8584elv 2756 . . . . . . 7 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀)
8681, 83, 853eqtr3g 2245 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8786ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10409 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
89 nfcsb1v 3105 . . . . . . . 8 𝑘𝑖 / 𝑘𝐶
9058zcnd 9406 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9190adantllr 481 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9265zcnd 9406 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
9392adantlr 477 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
94 csbeq1a 3081 . . . . . . . 8 (𝑘 = 𝑖𝐶 = 𝑖 / 𝑘𝐶)
9589, 29, 30, 33, 91, 93, 94fprodunsn 11644 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶))
9695oveq1d 5911 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
9796eqcomd 2195 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9897adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9953, 88, 983eqtrd 2226 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
10099ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
101 fprodmodd.a . 2 (𝜑𝐴 ∈ Fin)
1025, 10, 15, 20, 27, 100, 101findcard2sd 6920 1 (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  [wsbc 2977  csb 3072  cdif 3141  cun 3142  wss 3144  c0 3437  {csn 3607   class class class wbr 4018  (class class class)co 5896  Fincfn 6766  cc 7839  0cc0 7841  1c1 7842   · cmul 7846   < clt 8022  cn 8949  cz 9283  cq 9649   mod cmo 10353  cprod 11590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-proddc 11591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator