ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd GIF version

Theorem fprodmodd 11787
Description: If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a (𝜑𝐴 ∈ Fin)
fprodmodd.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fprodmodd.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
fprodmodd.m (𝜑𝑀 ∈ ℕ)
fprodmodd.p ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
Assertion
Ref Expression
fprodmodd (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmodd
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11699 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21oveq1d 5934 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀))
3 prodeq1 11699 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
43oveq1d 5934 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
52, 4eqeq12d 2208 . 2 (𝑥 = ∅ → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)))
6 prodeq1 11699 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 5934 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐵 mod 𝑀))
8 prodeq1 11699 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐶 = ∏𝑘𝑦 𝐶)
98oveq1d 5934 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
107, 9eqeq12d 2208 . 2 (𝑥 = 𝑦 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)))
11 prodeq1 11699 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵)
1211oveq1d 5934 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀))
13 prodeq1 11699 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶)
1413oveq1d 5934 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
1512, 14eqeq12d 2208 . 2 (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
16 prodeq1 11699 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1716oveq1d 5934 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐵 mod 𝑀))
18 prodeq1 11699 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐶 = ∏𝑘𝐴 𝐶)
1918oveq1d 5934 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
2017, 19eqeq12d 2208 . 2 (𝑥 = 𝐴 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀)))
21 prod0 11731 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2221a1i 9 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1)
2322oveq1d 5934 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀))
24 prod0 11731 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
2524eqcomi 2197 . . . 4 1 = ∏𝑘 ∈ ∅ 𝐶
2625oveq1i 5929 . . 3 (1 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)
2723, 26eqtrdi 2242 . 2 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
28 nfcsb1v 3114 . . . . . . 7 𝑘𝑖 / 𝑘𝐵
29 simplr 528 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
30 simprr 531 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
31 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
3231eldifbd 3166 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
3332adantlr 477 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
34 simpll 527 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
35 ssel 3174 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
3635adantr 276 . . . . . . . . . . . 12 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
3736adantl 277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
3837imp 124 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
39 fprodmodd.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
4034, 38, 39syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
4140zcnd 9443 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
4241adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
43 eldifi 3282 . . . . . . . . . . 11 (𝑖 ∈ (𝐴𝑦) → 𝑖𝐴)
4443adantl 277 . . . . . . . . . 10 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖𝐴)
4539ralrimiva 2567 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
46 rspcsbela 3141 . . . . . . . . . 10 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑖 / 𝑘𝐵 ∈ ℤ)
4744, 45, 46syl2anr 290 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℤ)
4847zcnd 9443 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
4948adantlr 477 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
50 csbeq1a 3090 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5128, 29, 30, 33, 42, 49, 50fprodunsn 11750 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵))
5251oveq1d 5934 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5352adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5440adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
5529, 54fprodzcl 11755 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℤ)
5655adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐵 ∈ ℤ)
57 fprodmodd.c . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
5834, 38, 57syl2anc 411 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
5958adantllr 481 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
6029, 59fprodzcl 11755 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6160adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6247ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐵 ∈ ℤ)
6357ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℤ)
64 rspcsbela 3141 . . . . . . 7 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐶 ∈ ℤ) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6544, 63, 64syl2anr 290 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6665ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐶 ∈ ℤ)
67 fprodmodd.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
68 nnq 9701 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
6967, 68syl 14 . . . . . 6 (𝜑𝑀 ∈ ℚ)
7069ad3antrrr 492 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℚ)
7167nngt0d 9028 . . . . . 6 (𝜑 → 0 < 𝑀)
7271ad3antrrr 492 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 0 < 𝑀)
73 simpr 110 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
74 fprodmodd.p . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7574ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
76 rspsbca 3070 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7744, 75, 76syl2anr 290 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
78 vex 2763 . . . . . . . . 9 𝑖 ∈ V
79 sbceqg 3097 . . . . . . . . 9 (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8078, 79mp1i 10 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8177, 80mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀))
82 csbov1g 5959 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀))
8382elv 2764 . . . . . . 7 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀)
84 csbov1g 5959 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8584elv 2764 . . . . . . 7 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀)
8681, 83, 853eqtr3g 2249 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8786ad4ant13 513 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10452 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
89 nfcsb1v 3114 . . . . . . . 8 𝑘𝑖 / 𝑘𝐶
9058zcnd 9443 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9190adantllr 481 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
9265zcnd 9443 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
9392adantlr 477 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
94 csbeq1a 3090 . . . . . . . 8 (𝑘 = 𝑖𝐶 = 𝑖 / 𝑘𝐶)
9589, 29, 30, 33, 91, 93, 94fprodunsn 11750 . . . . . . 7 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶))
9695oveq1d 5934 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
9796eqcomd 2199 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9897adantr 276 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9953, 88, 983eqtrd 2230 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
10099ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
101 fprodmodd.a . 2 (𝜑𝐴 ∈ Fin)
1025, 10, 15, 20, 27, 100, 101findcard2sd 6950 1 (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  [wsbc 2986  csb 3081  cdif 3151  cun 3152  wss 3154  c0 3447  {csn 3619   class class class wbr 4030  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874  1c1 7875   · cmul 7879   < clt 8056  cn 8984  cz 9320  cq 9687   mod cmo 10396  cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by:  gausslemma2dlem5a  15222
  Copyright terms: Public domain W3C validator