ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg GIF version

Theorem climshftlemg 11532
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))

Proof of Theorem climshftlemg
Dummy variables 𝑘 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9394 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
21ancoms 268 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
32adantlr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
4 eluzsub 9660 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
543com12 1209 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
653expa 1205 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
7 fveq2 5570 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝑀) → (𝐹𝑚) = (𝐹‘(𝑛𝑀)))
87eleq1d 2273 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
97oveq1d 5949 . . . . . . . . . . . . . 14 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
109fveq2d 5574 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝑀) → (abs‘((𝐹𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
1110breq1d 4053 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → ((abs‘((𝐹𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
128, 11anbi12d 473 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → (((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1312rspcv 2872 . . . . . . . . . 10 ((𝑛𝑀) ∈ (ℤ𝑘) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
146, 13syl 14 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1514adantllr 481 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
16 simplr 528 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝐹𝑉)
17 zcn 9359 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antrr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝑀 ∈ ℂ)
19 eluzelcn 9641 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ)
2019adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝑛 ∈ ℂ)
21 shftvalg 11066 . . . . . . . . . . . 12 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛𝑀)))
2221eleq1d 2273 . . . . . . . . . . 11 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
2321oveq1d 5949 . . . . . . . . . . . . 13 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
2423fveq2d 5574 . . . . . . . . . . . 12 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
2524breq1d 4053 . . . . . . . . . . 11 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
2622, 25anbi12d 473 . . . . . . . . . 10 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2716, 18, 20, 26syl3anc 1249 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2827adantlr 477 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2915, 28sylibrd 169 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3029ralrimdva 2585 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
31 fveq2 5570 . . . . . . . 8 (𝑚 = (𝑘 + 𝑀) → (ℤ𝑚) = (ℤ‘(𝑘 + 𝑀)))
3231raleqdv 2707 . . . . . . 7 (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3332rspcev 2876 . . . . . 6 (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))
343, 30, 33syl6an 1453 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3534rexlimdva 2622 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3635ralimdv 2573 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3736anim2d 337 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
38 simpr 110 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
39 eqidd 2205 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝐹𝑚))
4038, 39clim 11511 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥))))
41 ovshftex 11049 . . . . 5 ((𝐹𝑉𝑀 ∈ ℂ) → (𝐹 shift 𝑀) ∈ V)
4241ancoms 268 . . . 4 ((𝑀 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝑀) ∈ V)
4317, 42sylan 283 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 shift 𝑀) ∈ V)
44 eqidd 2205 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛))
4543, 44clim 11511 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
4637, 40, 453imtr4d 203 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484  Vcvv 2771   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905   + caddc 7910   < clt 8089  cmin 8225  cz 9354  cuz 9630  +crp 9757   shift cshi 11044  abscabs 11227  cli 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-shft 11045  df-clim 11509
This theorem is referenced by:  climshft  11534
  Copyright terms: Public domain W3C validator