ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg GIF version

Theorem climshftlemg 11445
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))

Proof of Theorem climshftlemg
Dummy variables 𝑘 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9357 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
21ancoms 268 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
32adantlr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ)
4 eluzsub 9622 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
543com12 1209 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
653expa 1205 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (𝑛𝑀) ∈ (ℤ𝑘))
7 fveq2 5554 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝑀) → (𝐹𝑚) = (𝐹‘(𝑛𝑀)))
87eleq1d 2262 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
97oveq1d 5933 . . . . . . . . . . . . . 14 (𝑚 = (𝑛𝑀) → ((𝐹𝑚) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
109fveq2d 5558 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝑀) → (abs‘((𝐹𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
1110breq1d 4039 . . . . . . . . . . . 12 (𝑚 = (𝑛𝑀) → ((abs‘((𝐹𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
128, 11anbi12d 473 . . . . . . . . . . 11 (𝑚 = (𝑛𝑀) → (((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1312rspcv 2860 . . . . . . . . . 10 ((𝑛𝑀) ∈ (ℤ𝑘) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
146, 13syl 14 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
1514adantllr 481 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
16 simplr 528 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝐹𝑉)
17 zcn 9322 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1817ad2antrr 488 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝑀 ∈ ℂ)
19 eluzelcn 9603 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ)
2019adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → 𝑛 ∈ ℂ)
21 shftvalg 10980 . . . . . . . . . . . 12 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛𝑀)))
2221eleq1d 2262 . . . . . . . . . . 11 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛𝑀)) ∈ ℂ))
2321oveq1d 5933 . . . . . . . . . . . . 13 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) − 𝐴) = ((𝐹‘(𝑛𝑀)) − 𝐴))
2423fveq2d 5558 . . . . . . . . . . . 12 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)))
2524breq1d 4039 . . . . . . . . . . 11 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥))
2622, 25anbi12d 473 . . . . . . . . . 10 ((𝐹𝑉𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2716, 18, 20, 26syl3anc 1249 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2827adantlr 477 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛𝑀)) − 𝐴)) < 𝑥)))
2915, 28sylibrd 169 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3029ralrimdva 2574 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
31 fveq2 5554 . . . . . . . 8 (𝑚 = (𝑘 + 𝑀) → (ℤ𝑚) = (ℤ‘(𝑘 + 𝑀)))
3231raleqdv 2696 . . . . . . 7 (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3332rspcev 2864 . . . . . 6 (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈ (ℤ‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))
343, 30, 33syl6an 1445 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3534rexlimdva 2611 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3635ralimdv 2562 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))
3736anim2d 337 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
38 simpr 110 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
39 eqidd 2194 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝐹𝑚))
4038, 39clim 11424 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑚) ∈ ℂ ∧ (abs‘((𝐹𝑚) − 𝐴)) < 𝑥))))
41 ovshftex 10963 . . . . 5 ((𝐹𝑉𝑀 ∈ ℂ) → (𝐹 shift 𝑀) ∈ V)
4241ancoms 268 . . . 4 ((𝑀 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝑀) ∈ V)
4317, 42sylan 283 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 shift 𝑀) ∈ V)
44 eqidd 2194 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛))
4543, 44clim 11424 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))))
4637, 40, 453imtr4d 203 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870   + caddc 7875   < clt 8054  cmin 8190  cz 9317  cuz 9592  +crp 9719   shift cshi 10958  abscabs 11141  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-shft 10959  df-clim 11422
This theorem is referenced by:  climshft  11447
  Copyright terms: Public domain W3C validator