| Step | Hyp | Ref
| Expression |
| 1 | | zaddcl 9366 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ) |
| 2 | 1 | ancoms 268 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ) |
| 3 | 2 | adantlr 477 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) → (𝑘 + 𝑀) ∈ ℤ) |
| 4 | | eluzsub 9631 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀))) → (𝑛 − 𝑀) ∈ (ℤ≥‘𝑘)) |
| 5 | 4 | 3com12 1209 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀))) → (𝑛 − 𝑀) ∈ (ℤ≥‘𝑘)) |
| 6 | 5 | 3expa 1205 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀))) → (𝑛 − 𝑀) ∈ (ℤ≥‘𝑘)) |
| 7 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 − 𝑀) → (𝐹‘𝑚) = (𝐹‘(𝑛 − 𝑀))) |
| 8 | 7 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 − 𝑀) → ((𝐹‘𝑚) ∈ ℂ ↔ (𝐹‘(𝑛 − 𝑀)) ∈ ℂ)) |
| 9 | 7 | oveq1d 5937 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 − 𝑀) → ((𝐹‘𝑚) − 𝐴) = ((𝐹‘(𝑛 − 𝑀)) − 𝐴)) |
| 10 | 9 | fveq2d 5562 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 − 𝑀) → (abs‘((𝐹‘𝑚) − 𝐴)) = (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴))) |
| 11 | 10 | breq1d 4043 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 − 𝑀) → ((abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥)) |
| 12 | 8, 11 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 − 𝑀) → (((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 13 | 12 | rspcv 2864 |
. . . . . . . . . 10
⊢ ((𝑛 − 𝑀) ∈ (ℤ≥‘𝑘) → (∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 14 | 6, 13 | syl 14 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 15 | 14 | adantllr 481 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 16 | | simplr 528 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → 𝐹 ∈ 𝑉) |
| 17 | | zcn 9331 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → 𝑀 ∈ ℂ) |
| 19 | | eluzelcn 9612 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀)) → 𝑛 ∈ ℂ) |
| 20 | 19 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → 𝑛 ∈ ℂ) |
| 21 | | shftvalg 11001 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝐹 shift 𝑀)‘𝑛) = (𝐹‘(𝑛 − 𝑀))) |
| 22 | 21 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ↔ (𝐹‘(𝑛 − 𝑀)) ∈ ℂ)) |
| 23 | 21 | oveq1d 5937 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝐹 shift 𝑀)‘𝑛) − 𝐴) = ((𝐹‘(𝑛 − 𝑀)) − 𝐴)) |
| 24 | 23 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) = (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴))) |
| 25 | 24 | breq1d 4043 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥)) |
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 27 | 16, 18, 20, 26 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 28 | 27 | adantlr 477 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → ((((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝑛 − 𝑀)) ∈ ℂ ∧ (abs‘((𝐹‘(𝑛 − 𝑀)) − 𝐴)) < 𝑥))) |
| 29 | 15, 28 | sylibrd 169 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) ∧ 𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))) → (∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → (((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 30 | 29 | ralrimdva 2577 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ∀𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 31 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 + 𝑀) → (ℤ≥‘𝑚) =
(ℤ≥‘(𝑘 + 𝑀))) |
| 32 | 31 | raleqdv 2699 |
. . . . . . 7
⊢ (𝑚 = (𝑘 + 𝑀) → (∀𝑛 ∈ (ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥) ↔ ∀𝑛 ∈ (ℤ≥‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 33 | 32 | rspcev 2868 |
. . . . . 6
⊢ (((𝑘 + 𝑀) ∈ ℤ ∧ ∀𝑛 ∈
(ℤ≥‘(𝑘 + 𝑀))(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)) |
| 34 | 3, 30, 33 | syl6an 1445 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 35 | 34 | rexlimdva 2614 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (∃𝑘 ∈ ℤ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ∃𝑚 ∈ ℤ ∀𝑛 ∈ (ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 36 | 35 | ralimdv 2565 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ ∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ ℤ ∀𝑛 ∈
(ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥))) |
| 37 | 36 | anim2d 337 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑘 ∈ ℤ
∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑚 ∈ ℤ
∀𝑛 ∈
(ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))) |
| 38 | | simpr 110 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) |
| 39 | | eqidd 2197 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ ℤ) → (𝐹‘𝑚) = (𝐹‘𝑚)) |
| 40 | 38, 39 | clim 11446 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑘 ∈ ℤ
∀𝑚 ∈
(ℤ≥‘𝑘)((𝐹‘𝑚) ∈ ℂ ∧ (abs‘((𝐹‘𝑚) − 𝐴)) < 𝑥)))) |
| 41 | | ovshftex 10984 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ℂ) → (𝐹 shift 𝑀) ∈ V) |
| 42 | 41 | ancoms 268 |
. . . 4
⊢ ((𝑀 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝑀) ∈ V) |
| 43 | 17, 42 | sylan 283 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝑀) ∈ V) |
| 44 | | eqidd 2197 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑛 ∈ ℤ) → ((𝐹 shift 𝑀)‘𝑛) = ((𝐹 shift 𝑀)‘𝑛)) |
| 45 | 43, 44 | clim 11446 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑚 ∈ ℤ
∀𝑛 ∈
(ℤ≥‘𝑚)(((𝐹 shift 𝑀)‘𝑛) ∈ ℂ ∧ (abs‘(((𝐹 shift 𝑀)‘𝑛) − 𝐴)) < 𝑥)))) |
| 46 | 37, 40, 45 | 3imtr4d 203 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴)) |