ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss GIF version

Theorem metss 15010
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐶. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metss ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopnval 14958 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐶)))
32adantr 276 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐽 = (topGen‘ran (ball‘𝐶)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 14958 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
65adantl 277 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐾 = (topGen‘ran (ball‘𝐷)))
73, 6sseq12d 3225 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ (topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷))))
8 blbas 14949 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) ∈ TopBases)
98adantr 276 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) ∈ TopBases)
10 unirnbl 14939 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) = 𝑋)
1110adantr 276 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = 𝑋)
12 unirnbl 14939 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
1312adantl 277 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐷) = 𝑋)
1411, 13eqtr4d 2242 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = ran (ball‘𝐷))
15 tgss2 14595 . . 3 ((ran (ball‘𝐶) ∈ TopBases ∧ ran (ball‘𝐶) = ran (ball‘𝐷)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
169, 14, 15syl2anc 411 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
1711raleqdv 2709 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
18 blssex 14946 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
1918adantll 476 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
2019imbi2d 230 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → ((𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
2120ralbidv 2507 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
22 rpxr 9790 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
23 blelrn 14936 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
2422, 23syl3an3 1285 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
25 blcntr 14932 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)𝑟))
26 eleq2 2270 . . . . . . . . . . . . 13 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦𝑥 ∈ (𝑥(ball‘𝐶)𝑟)))
27 sseq2 3218 . . . . . . . . . . . . . 14 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2827rexbidv 2508 . . . . . . . . . . . . 13 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2926, 28imbi12d 234 . . . . . . . . . . . 12 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3029rspcv 2874 . . . . . . . . . . 11 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3130com23 78 . . . . . . . . . 10 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3224, 25, 31sylc 62 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
33323expa 1206 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3433adantllr 481 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3534ralrimdva 2587 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
36 blss 14944 . . . . . . . . . . . . 13 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
37363expb 1207 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
3837adantlr 477 . . . . . . . . . . 11 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
3938adantlr 477 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
40 r19.29 2644 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦))
41 sstr 3202 . . . . . . . . . . . . . . . 16 (((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4241expcom 116 . . . . . . . . . . . . . . 15 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4342reximdv 2608 . . . . . . . . . . . . . 14 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4443impcom 125 . . . . . . . . . . . . 13 ((∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4544rexlimivw 2620 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4640, 45syl 14 . . . . . . . . . . 11 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4746ex 115 . . . . . . . . . 10 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4839, 47syl5com 29 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4948expr 375 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (𝑥𝑦 → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
5049com23 78 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
5150ralrimdva 2587 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
5235, 51impbid 129 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5321, 52bitrd 188 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5453ralbidva 2503 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5517, 54bitrd 188 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
567, 16, 553bitrd 214 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  wss 3167   cuni 3852  ran crn 4680  cfv 5276  (class class class)co 5951  *cxr 8113  +crp 9782  topGenctg 13130  ∞Metcxmet 14342  ballcbl 14344  MetOpencmopn 14347  TopBasesctb 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-bl 14352  df-mopn 14353  df-top 14514  df-bases 14559
This theorem is referenced by:  metequiv  15011  metss2  15014
  Copyright terms: Public domain W3C validator