Step | Hyp | Ref
| Expression |
1 | | metequiv.3 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐶) |
2 | 1 | mopnval 13082 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐶))) |
3 | 2 | adantr 274 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐽 = (topGen‘ran (ball‘𝐶))) |
4 | | metequiv.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
5 | 4 | mopnval 13082 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
6 | 5 | adantl 275 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
7 | 3, 6 | sseq12d 3173 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ (topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran
(ball‘𝐷)))) |
8 | | blbas 13073 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) ∈
TopBases) |
9 | 8 | adantr 274 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) ∈ TopBases) |
10 | | unirnbl 13063 |
. . . . 5
⊢ (𝐶 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐶) = 𝑋) |
11 | 10 | adantr 274 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ∪ ran
(ball‘𝐶) = 𝑋) |
12 | | unirnbl 13063 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
13 | 12 | adantl 275 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ∪ ran
(ball‘𝐷) = 𝑋) |
14 | 11, 13 | eqtr4d 2201 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ∪ ran
(ball‘𝐶) = ∪ ran (ball‘𝐷)) |
15 | | tgss2 12719 |
. . 3
⊢ ((ran
(ball‘𝐶) ∈
TopBases ∧ ∪ ran (ball‘𝐶) = ∪ ran
(ball‘𝐷)) →
((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran
(ball‘𝐷)) ↔
∀𝑥 ∈ ∪ ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
16 | 9, 14, 15 | syl2anc 409 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((topGen‘ran
(ball‘𝐶)) ⊆
(topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ∈ ∪ ran
(ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
17 | 11 | raleqdv 2667 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ ∪ ran
(ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
18 | | blssex 13070 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
19 | 18 | adantll 468 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
20 | 19 | imbi2d 229 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ (𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))) |
21 | 20 | ralbidv 2466 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))) |
22 | | rpxr 9597 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
23 | | blelrn 13060 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶)) |
24 | 22, 23 | syl3an3 1263 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶)) |
25 | | blcntr 13056 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)𝑟)) |
26 | | eleq2 2230 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥(ball‘𝐶)𝑟) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑥(ball‘𝐶)𝑟))) |
27 | | sseq2 3166 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
28 | 27 | rexbidv 2467 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥(ball‘𝐶)𝑟) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
29 | 26, 28 | imbi12d 233 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))) |
30 | 29 | rspcv 2826 |
. . . . . . . . . . 11
⊢ ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))) |
31 | 30 | com23 78 |
. . . . . . . . . 10
⊢ ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))) |
32 | 24, 25, 31 | sylc 62 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) →
(∀𝑦 ∈ ran
(ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
33 | 32 | 3expa 1193 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
(∀𝑦 ∈ ran
(ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
34 | 33 | adantllr 473 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑟 ∈ ℝ+) →
(∀𝑦 ∈ ran
(ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
35 | 34 | ralrimdva 2546 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
36 | | blss 13068 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥 ∈ 𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) |
37 | 36 | 3expb 1194 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥 ∈ 𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) |
38 | 37 | adantlr 469 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥 ∈ 𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) |
39 | 38 | adantlr 469 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥 ∈ 𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) |
40 | | r19.29 2603 |
. . . . . . . . . . . 12
⊢
((∀𝑟 ∈
ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)) |
41 | | sstr 3150 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) |
42 | 41 | expcom 115 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
43 | 42 | reximdv 2567 |
. . . . . . . . . . . . . 14
⊢ ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
44 | 43 | impcom 124 |
. . . . . . . . . . . . 13
⊢
((∃𝑠 ∈
ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) |
45 | 44 | rexlimivw 2579 |
. . . . . . . . . . . 12
⊢
(∃𝑟 ∈
ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) |
46 | 40, 45 | syl 14 |
. . . . . . . . . . 11
⊢
((∀𝑟 ∈
ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) |
47 | 46 | ex 114 |
. . . . . . . . . 10
⊢
(∀𝑟 ∈
ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
48 | 39, 47 | syl5com 29 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥 ∈ 𝑦)) → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)) |
49 | 48 | expr 373 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (𝑥 ∈ 𝑦 → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))) |
50 | 49 | com23 78 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))) |
51 | 50 | ralrimdva 2546 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))) |
52 | 35, 51 | impbid 128 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
53 | 21, 52 | bitrd 187 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥 ∈ 𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
54 | 53 | ralbidva 2462 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
55 | 17, 54 | bitrd 187 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ ∪ ran
(ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥 ∈ 𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
56 | 7, 16, 55 | 3bitrd 213 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |