Step | Hyp | Ref
| Expression |
1 | | metequiv.3 |
. . . . 5
β’ π½ = (MetOpenβπΆ) |
2 | 1 | mopnval 13945 |
. . . 4
β’ (πΆ β (βMetβπ) β π½ = (topGenβran (ballβπΆ))) |
3 | 2 | adantr 276 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β π½ = (topGenβran (ballβπΆ))) |
4 | | metequiv.4 |
. . . . 5
β’ πΎ = (MetOpenβπ·) |
5 | 4 | mopnval 13945 |
. . . 4
β’ (π· β (βMetβπ) β πΎ = (topGenβran (ballβπ·))) |
6 | 5 | adantl 277 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β πΎ = (topGenβran (ballβπ·))) |
7 | 3, 6 | sseq12d 3187 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β (topGenβran (ballβπΆ)) β (topGenβran
(ballβπ·)))) |
8 | | blbas 13936 |
. . . 4
β’ (πΆ β (βMetβπ) β ran (ballβπΆ) β
TopBases) |
9 | 8 | adantr 276 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ran (ballβπΆ) β TopBases) |
10 | | unirnbl 13926 |
. . . . 5
β’ (πΆ β (βMetβπ) β βͺ ran (ballβπΆ) = π) |
11 | 10 | adantr 276 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπΆ) = π) |
12 | | unirnbl 13926 |
. . . . 5
β’ (π· β (βMetβπ) β βͺ ran (ballβπ·) = π) |
13 | 12 | adantl 277 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπ·) = π) |
14 | 11, 13 | eqtr4d 2213 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπΆ) = βͺ ran (ballβπ·)) |
15 | | tgss2 13582 |
. . 3
β’ ((ran
(ballβπΆ) β
TopBases β§ βͺ ran (ballβπΆ) = βͺ ran
(ballβπ·)) β
((topGenβran (ballβπΆ)) β (topGenβran
(ballβπ·)) β
βπ₯ β βͺ ran (ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
16 | 9, 14, 15 | syl2anc 411 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ((topGenβran
(ballβπΆ)) β
(topGenβran (ballβπ·)) β βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
17 | 11 | raleqdv 2679 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
18 | | blssex 13933 |
. . . . . . . 8
β’ ((π· β (βMetβπ) β§ π₯ β π) β (βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
19 | 18 | adantll 476 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
20 | 19 | imbi2d 230 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β ((π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β (π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
21 | 20 | ralbidv 2477 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
22 | | rpxr 9661 |
. . . . . . . . . . 11
β’ (π β β+
β π β
β*) |
23 | | blelrn 13923 |
. . . . . . . . . . 11
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β*) β (π₯(ballβπΆ)π) β ran (ballβπΆ)) |
24 | 22, 23 | syl3an3 1273 |
. . . . . . . . . 10
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β (π₯(ballβπΆ)π) β ran (ballβπΆ)) |
25 | | blcntr 13919 |
. . . . . . . . . 10
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β π₯ β (π₯(ballβπΆ)π)) |
26 | | eleq2 2241 |
. . . . . . . . . . . . 13
β’ (π¦ = (π₯(ballβπΆ)π) β (π₯ β π¦ β π₯ β (π₯(ballβπΆ)π))) |
27 | | sseq2 3180 |
. . . . . . . . . . . . . 14
β’ (π¦ = (π₯(ballβπΆ)π) β ((π₯(ballβπ·)π ) β π¦ β (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
28 | 27 | rexbidv 2478 |
. . . . . . . . . . . . 13
β’ (π¦ = (π₯(ballβπΆ)π) β (βπ β β+ (π₯(ballβπ·)π ) β π¦ β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
29 | 26, 28 | imbi12d 234 |
. . . . . . . . . . . 12
β’ (π¦ = (π₯(ballβπΆ)π) β ((π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β (π₯ β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
30 | 29 | rspcv 2838 |
. . . . . . . . . . 11
β’ ((π₯(ballβπΆ)π) β ran (ballβπΆ) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β (π₯ β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
31 | 30 | com23 78 |
. . . . . . . . . 10
β’ ((π₯(ballβπΆ)π) β ran (ballβπΆ) β (π₯ β (π₯(ballβπΆ)π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
32 | 24, 25, 31 | sylc 62 |
. . . . . . . . 9
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β
(βπ¦ β ran
(ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
33 | 32 | 3expa 1203 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π₯ β π) β§ π β β+) β
(βπ¦ β ran
(ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
34 | 33 | adantllr 481 |
. . . . . . 7
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π β β+) β
(βπ¦ β ran
(ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
35 | 34 | ralrimdva 2557 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
36 | | blss 13931 |
. . . . . . . . . . . . 13
β’ ((πΆ β (βMetβπ) β§ π¦ β ran (ballβπΆ) β§ π₯ β π¦) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
37 | 36 | 3expb 1204 |
. . . . . . . . . . . 12
β’ ((πΆ β (βMetβπ) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
38 | 37 | adantlr 477 |
. . . . . . . . . . 11
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
39 | 38 | adantlr 477 |
. . . . . . . . . 10
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
40 | | r19.29 2614 |
. . . . . . . . . . . 12
β’
((βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦)) |
41 | | sstr 3164 |
. . . . . . . . . . . . . . . 16
β’ (((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β (π₯(ballβπ·)π ) β π¦) |
42 | 41 | expcom 116 |
. . . . . . . . . . . . . . 15
β’ ((π₯(ballβπΆ)π) β π¦ β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯(ballβπ·)π ) β π¦)) |
43 | 42 | reximdv 2578 |
. . . . . . . . . . . . . 14
β’ ((π₯(ballβπΆ)π) β π¦ β (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
44 | 43 | impcom 125 |
. . . . . . . . . . . . 13
β’
((βπ β
β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
45 | 44 | rexlimivw 2590 |
. . . . . . . . . . . 12
β’
(βπ β
β+ (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
46 | 40, 45 | syl 14 |
. . . . . . . . . . 11
β’
((βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
47 | 46 | ex 115 |
. . . . . . . . . 10
β’
(βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (βπ β β+ (π₯(ballβπΆ)π) β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
48 | 39, 47 | syl5com 29 |
. . . . . . . . 9
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
49 | 48 | expr 375 |
. . . . . . . 8
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π¦ β ran (ballβπΆ)) β (π₯ β π¦ β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
50 | 49 | com23 78 |
. . . . . . 7
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π¦ β ran (ballβπΆ)) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
51 | 50 | ralrimdva 2557 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
52 | 35, 51 | impbid 129 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
53 | 21, 52 | bitrd 188 |
. . . 4
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
54 | 53 | ralbidva 2473 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β π βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
55 | 17, 54 | bitrd 188 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
56 | 7, 16, 55 | 3bitrd 214 |
1
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |