ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss GIF version

Theorem metss 13997
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐢. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpenβ€˜πΆ)
metequiv.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metss ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Distinct variable groups:   𝑠,π‘Ÿ,π‘₯,𝐢   𝐽,π‘Ÿ,𝑠,π‘₯   𝐾,π‘Ÿ,𝑠,π‘₯   𝐷,π‘Ÿ,𝑠,π‘₯   𝑋,π‘Ÿ,𝑠,π‘₯

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpenβ€˜πΆ)
21mopnval 13945 . . . 4 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
32adantr 276 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpenβ€˜π·)
54mopnval 13945 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
65adantl 277 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
73, 6sseq12d 3187 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ (topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·))))
8 blbas 13936 . . . 4 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜πΆ) ∈ TopBases)
98adantr 276 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ran (ballβ€˜πΆ) ∈ TopBases)
10 unirnbl 13926 . . . . 5 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
1110adantr 276 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
12 unirnbl 13926 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1312adantl 277 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1411, 13eqtr4d 2213 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·))
15 tgss2 13582 . . 3 ((ran (ballβ€˜πΆ) ∈ TopBases ∧ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
169, 14, 15syl2anc 411 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
1711raleqdv 2679 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
18 blssex 13933 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
1918adantll 476 . . . . . . 7 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
2019imbi2d 230 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
2120ralbidv 2477 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
22 rpxr 9661 . . . . . . . . . . 11 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
23 blelrn 13923 . . . . . . . . . . 11 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
2422, 23syl3an3 1273 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
25 blcntr 13919 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ))
26 eleq2 2241 . . . . . . . . . . . . 13 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
27 sseq2 3180 . . . . . . . . . . . . . 14 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2827rexbidv 2478 . . . . . . . . . . . . 13 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2926, 28imbi12d 234 . . . . . . . . . . . 12 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3029rspcv 2838 . . . . . . . . . . 11 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3130com23 78 . . . . . . . . . 10 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3224, 25, 31sylc 62 . . . . . . . . 9 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
33323expa 1203 . . . . . . . 8 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3433adantllr 481 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3534ralrimdva 2557 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
36 blss 13931 . . . . . . . . . . . . 13 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
37363expb 1204 . . . . . . . . . . . 12 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
3837adantlr 477 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
3938adantlr 477 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
40 r19.29 2614 . . . . . . . . . . . 12 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦))
41 sstr 3164 . . . . . . . . . . . . . . . 16 (((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4241expcom 116 . . . . . . . . . . . . . . 15 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4342reximdv 2578 . . . . . . . . . . . . . 14 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4443impcom 125 . . . . . . . . . . . . 13 ((βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4544rexlimivw 2590 . . . . . . . . . . . 12 (βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4640, 45syl 14 . . . . . . . . . . 11 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4746ex 115 . . . . . . . . . 10 (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4839, 47syl5com 29 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4948expr 375 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (π‘₯ ∈ 𝑦 β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
5049com23 78 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
5150ralrimdva 2557 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
5235, 51impbid 129 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5321, 52bitrd 188 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5453ralbidva 2473 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5517, 54bitrd 188 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
567, 16, 553bitrd 214 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   βŠ† wss 3130  βˆͺ cuni 3810  ran crn 4628  β€˜cfv 5217  (class class class)co 5875  β„*cxr 7991  β„+crp 9653  topGenctg 12703  βˆžMetcxmet 13443  ballcbl 13445  MetOpencmopn 13448  TopBasesctb 13545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-bl 13453  df-mopn 13454  df-top 13501  df-bases 13546
This theorem is referenced by:  metequiv  13998  metss2  14001
  Copyright terms: Public domain W3C validator