Proof of Theorem ivthinclemlr
Step | Hyp | Ref
| Expression |
1 | | ivth.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐴 ∈ ℝ) |
3 | | ivth.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐵 ∈ ℝ) |
5 | | ivth.3 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) |
6 | 5 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝑈 ∈ ℝ) |
7 | | ivth.4 |
. . . . . 6
⊢ (𝜑 → 𝐴 < 𝐵) |
8 | 7 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐴 < 𝐵) |
9 | | ivth.5 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
10 | 9 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → (𝐴[,]𝐵) ⊆ 𝐷) |
11 | | ivth.7 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
12 | 11 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐹 ∈ (𝐷–cn→ℂ)) |
13 | | ivth.8 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
14 | 13 | adantlr 469 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
15 | 14 | adantlr 469 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
16 | | ivth.9 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
17 | 16 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
18 | | ivthinc.i |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
19 | 18 | adantllr 473 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
20 | 19 | adantllr 473 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
21 | | ivthinclem.l |
. . . . 5
⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
22 | | ivthinclem.r |
. . . . 5
⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
23 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ 𝐿) |
24 | 2, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23 | ivthinclemlopn 13254 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) |
25 | 24 | ex 114 |
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (𝑞 ∈ 𝐿 → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
26 | | simpllr 524 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵)) |
27 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝐹‘𝑥) = (𝐹‘𝑞)) |
28 | 27 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑞) ∈ ℝ)) |
29 | 13 | ralrimiva 2539 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
30 | 29 | ad3antrrr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
31 | 28, 30, 26 | rspcdva 2835 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) ∈ ℝ) |
32 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = 𝑟 → (𝐹‘𝑥) = (𝐹‘𝑟)) |
33 | 32 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑥 = 𝑟 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑟) ∈ ℝ)) |
34 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑟 → (𝐹‘𝑤) = (𝐹‘𝑟)) |
35 | 34 | breq1d 3992 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑟 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑟) < 𝑈)) |
36 | 35, 21 | elrab2 2885 |
. . . . . . . . 9
⊢ (𝑟 ∈ 𝐿 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑟) < 𝑈)) |
37 | 36 | simplbi 272 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝐿 → 𝑟 ∈ (𝐴[,]𝐵)) |
38 | 37 | ad2antlr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵)) |
39 | 33, 30, 38 | rspcdva 2835 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑟) ∈ ℝ) |
40 | 5 | ad3antrrr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ) |
41 | | simpr 109 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟) |
42 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → (𝑞 < 𝑦 ↔ 𝑞 < 𝑟)) |
43 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑟 → (𝐹‘𝑦) = (𝐹‘𝑟)) |
44 | 43 | breq2d 3994 |
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → ((𝐹‘𝑞) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑟))) |
45 | 42, 44 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟)))) |
46 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → (𝑥 < 𝑦 ↔ 𝑞 < 𝑦)) |
47 | 27 | breq1d 3992 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑦))) |
48 | 46, 47 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) |
49 | 48 | ralbidv 2466 |
. . . . . . . . 9
⊢ (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) |
50 | 18 | expr 373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) |
51 | 50 | ralrimiva 2539 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) |
52 | 51 | ralrimiva 2539 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) |
53 | 52 | ad3antrrr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) |
54 | 49, 53, 26 | rspcdva 2835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦))) |
55 | 45, 54, 38 | rspcdva 2835 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟))) |
56 | 41, 55 | mpd 13 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) < (𝐹‘𝑟)) |
57 | 36 | simprbi 273 |
. . . . . . 7
⊢ (𝑟 ∈ 𝐿 → (𝐹‘𝑟) < 𝑈) |
58 | 57 | ad2antlr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑟) < 𝑈) |
59 | 31, 39, 40, 56, 58 | lttrd 8024 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) < 𝑈) |
60 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑤 = 𝑞 → (𝐹‘𝑤) = (𝐹‘𝑞)) |
61 | 60 | breq1d 3992 |
. . . . . 6
⊢ (𝑤 = 𝑞 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑞) < 𝑈)) |
62 | 61, 21 | elrab2 2885 |
. . . . 5
⊢ (𝑞 ∈ 𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑞) < 𝑈)) |
63 | 26, 59, 62 | sylanbrc 414 |
. . . 4
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ 𝐿) |
64 | 63 | rexlimdva2 2586 |
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (∃𝑟 ∈ 𝐿 𝑞 < 𝑟 → 𝑞 ∈ 𝐿)) |
65 | 25, 64 | impbid 128 |
. 2
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
66 | 65 | ralrimiva 2539 |
1
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |