ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr GIF version

Theorem ivthinclemlr 13409
Description: Lemma for ivthinc 13415. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Distinct variable groups:   𝐴,𝑟,𝑤   𝑥,𝐴,𝑦,𝑟   𝐵,𝑟,𝑤   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑟,𝑥,𝑦   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝑤,𝑞
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑞)   𝐵(𝑞)   𝐷(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑈(𝑥,𝑦,𝑟,𝑞)   𝐹(𝑟,𝑞)   𝐿(𝑤,𝑞)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
21ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 ∈ ℝ)
3 ivth.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
43ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐵 ∈ ℝ)
5 ivth.3 . . . . . 6 (𝜑𝑈 ∈ ℝ)
65ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑈 ∈ ℝ)
7 ivth.4 . . . . . 6 (𝜑𝐴 < 𝐵)
87ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 < 𝐵)
9 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
109ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → (𝐴[,]𝐵) ⊆ 𝐷)
11 ivth.7 . . . . . 6 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1211ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐹 ∈ (𝐷cn→ℂ))
13 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1413adantlr 474 . . . . . 6 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 474 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . 6 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716ad2antrr 485 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
18 ivthinc.i . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
1918adantllr 478 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
2019adantllr 478 . . . . 5 (((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
21 ivthinclem.l . . . . 5 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
22 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
23 simpr 109 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑞𝐿)
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 13408 . . . 4 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
2524ex 114 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 → ∃𝑟𝐿 𝑞 < 𝑟))
26 simpllr 529 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵))
27 fveq2 5496 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
2827eleq1d 2239 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑞) ∈ ℝ))
2913ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3029ad3antrrr 489 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3128, 30, 26rspcdva 2839 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) ∈ ℝ)
32 fveq2 5496 . . . . . . . 8 (𝑥 = 𝑟 → (𝐹𝑥) = (𝐹𝑟))
3332eleq1d 2239 . . . . . . 7 (𝑥 = 𝑟 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑟) ∈ ℝ))
34 fveq2 5496 . . . . . . . . . . 11 (𝑤 = 𝑟 → (𝐹𝑤) = (𝐹𝑟))
3534breq1d 3999 . . . . . . . . . 10 (𝑤 = 𝑟 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑟) < 𝑈))
3635, 21elrab2 2889 . . . . . . . . 9 (𝑟𝐿 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑟) < 𝑈))
3736simplbi 272 . . . . . . . 8 (𝑟𝐿𝑟 ∈ (𝐴[,]𝐵))
3837ad2antlr 486 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵))
3933, 30, 38rspcdva 2839 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) ∈ ℝ)
405ad3antrrr 489 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ)
41 simpr 109 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟)
42 breq2 3993 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 < 𝑦𝑞 < 𝑟))
43 fveq2 5496 . . . . . . . . . 10 (𝑦 = 𝑟 → (𝐹𝑦) = (𝐹𝑟))
4443breq2d 4001 . . . . . . . . 9 (𝑦 = 𝑟 → ((𝐹𝑞) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑟)))
4542, 44imbi12d 233 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)) ↔ (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟))))
46 breq1 3992 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 < 𝑦𝑞 < 𝑦))
4727breq1d 3999 . . . . . . . . . . 11 (𝑥 = 𝑞 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑦)))
4846, 47imbi12d 233 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
4948ralbidv 2470 . . . . . . . . 9 (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
5018expr 373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5150ralrimiva 2543 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5251ralrimiva 2543 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5352ad3antrrr 489 . . . . . . . . 9 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5449, 53, 26rspcdva 2839 . . . . . . . 8 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)))
5545, 54, 38rspcdva 2839 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟)))
5641, 55mpd 13 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < (𝐹𝑟))
5736simprbi 273 . . . . . . 7 (𝑟𝐿 → (𝐹𝑟) < 𝑈)
5857ad2antlr 486 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) < 𝑈)
5931, 39, 40, 56, 58lttrd 8045 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < 𝑈)
60 fveq2 5496 . . . . . . 7 (𝑤 = 𝑞 → (𝐹𝑤) = (𝐹𝑞))
6160breq1d 3999 . . . . . 6 (𝑤 = 𝑞 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑞) < 𝑈))
6261, 21elrab2 2889 . . . . 5 (𝑞𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑞) < 𝑈))
6326, 59, 62sylanbrc 415 . . . 4 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞𝐿)
6463rexlimdva2 2590 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (∃𝑟𝐿 𝑞 < 𝑟𝑞𝐿))
6525, 64impbid 128 . 2 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
6665ralrimiva 2543 1 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773   < clt 7954  [,]cicc 9848  cnccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-icc 9852  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  ivthinclemex  13414
  Copyright terms: Public domain W3C validator