ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr GIF version

Theorem ivthinclemlr 13255
Description: Lemma for ivthinc 13261. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Distinct variable groups:   𝐴,𝑟,𝑤   𝑥,𝐴,𝑦,𝑟   𝐵,𝑟,𝑤   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑟,𝑥,𝑦   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝑤,𝑞
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑞)   𝐵(𝑞)   𝐷(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑈(𝑥,𝑦,𝑟,𝑞)   𝐹(𝑟,𝑞)   𝐿(𝑤,𝑞)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
21ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 ∈ ℝ)
3 ivth.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
43ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐵 ∈ ℝ)
5 ivth.3 . . . . . 6 (𝜑𝑈 ∈ ℝ)
65ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑈 ∈ ℝ)
7 ivth.4 . . . . . 6 (𝜑𝐴 < 𝐵)
87ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 < 𝐵)
9 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
109ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → (𝐴[,]𝐵) ⊆ 𝐷)
11 ivth.7 . . . . . 6 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1211ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐹 ∈ (𝐷cn→ℂ))
13 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1413adantlr 469 . . . . . 6 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 469 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . 6 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716ad2antrr 480 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
18 ivthinc.i . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
1918adantllr 473 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
2019adantllr 473 . . . . 5 (((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
21 ivthinclem.l . . . . 5 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
22 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
23 simpr 109 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑞𝐿)
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 13254 . . . 4 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
2524ex 114 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 → ∃𝑟𝐿 𝑞 < 𝑟))
26 simpllr 524 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵))
27 fveq2 5486 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
2827eleq1d 2235 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑞) ∈ ℝ))
2913ralrimiva 2539 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3029ad3antrrr 484 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3128, 30, 26rspcdva 2835 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) ∈ ℝ)
32 fveq2 5486 . . . . . . . 8 (𝑥 = 𝑟 → (𝐹𝑥) = (𝐹𝑟))
3332eleq1d 2235 . . . . . . 7 (𝑥 = 𝑟 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑟) ∈ ℝ))
34 fveq2 5486 . . . . . . . . . . 11 (𝑤 = 𝑟 → (𝐹𝑤) = (𝐹𝑟))
3534breq1d 3992 . . . . . . . . . 10 (𝑤 = 𝑟 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑟) < 𝑈))
3635, 21elrab2 2885 . . . . . . . . 9 (𝑟𝐿 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑟) < 𝑈))
3736simplbi 272 . . . . . . . 8 (𝑟𝐿𝑟 ∈ (𝐴[,]𝐵))
3837ad2antlr 481 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵))
3933, 30, 38rspcdva 2835 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) ∈ ℝ)
405ad3antrrr 484 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ)
41 simpr 109 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟)
42 breq2 3986 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 < 𝑦𝑞 < 𝑟))
43 fveq2 5486 . . . . . . . . . 10 (𝑦 = 𝑟 → (𝐹𝑦) = (𝐹𝑟))
4443breq2d 3994 . . . . . . . . 9 (𝑦 = 𝑟 → ((𝐹𝑞) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑟)))
4542, 44imbi12d 233 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)) ↔ (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟))))
46 breq1 3985 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 < 𝑦𝑞 < 𝑦))
4727breq1d 3992 . . . . . . . . . . 11 (𝑥 = 𝑞 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑦)))
4846, 47imbi12d 233 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
4948ralbidv 2466 . . . . . . . . 9 (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
5018expr 373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5150ralrimiva 2539 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5251ralrimiva 2539 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5352ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5449, 53, 26rspcdva 2835 . . . . . . . 8 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)))
5545, 54, 38rspcdva 2835 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟)))
5641, 55mpd 13 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < (𝐹𝑟))
5736simprbi 273 . . . . . . 7 (𝑟𝐿 → (𝐹𝑟) < 𝑈)
5857ad2antlr 481 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) < 𝑈)
5931, 39, 40, 56, 58lttrd 8024 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < 𝑈)
60 fveq2 5486 . . . . . . 7 (𝑤 = 𝑞 → (𝐹𝑤) = (𝐹𝑞))
6160breq1d 3992 . . . . . 6 (𝑤 = 𝑞 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑞) < 𝑈))
6261, 21elrab2 2885 . . . . 5 (𝑞𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑞) < 𝑈))
6326, 59, 62sylanbrc 414 . . . 4 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞𝐿)
6463rexlimdva2 2586 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (∃𝑟𝐿 𝑞 < 𝑟𝑞𝐿))
6525, 64impbid 128 . 2 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
6665ralrimiva 2539 1 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  wss 3116   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752   < clt 7933  [,]cicc 9827  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-icc 9831  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-cncf 13198
This theorem is referenced by:  ivthinclemex  13260
  Copyright terms: Public domain W3C validator