ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr GIF version

Theorem ivthinclemlr 13782
Description: Lemma for ivthinc 13788. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemlr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Distinct variable groups:   𝐴,𝑟,𝑤   𝑥,𝐴,𝑦,𝑟   𝐵,𝑟,𝑤   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑟,𝑥,𝑦   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝑤,𝑞
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑞)   𝐵(𝑞)   𝐷(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑅(𝑥,𝑦,𝑤,𝑟,𝑞)   𝑈(𝑥,𝑦,𝑟,𝑞)   𝐹(𝑟,𝑞)   𝐿(𝑤,𝑞)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
21ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 ∈ ℝ)
3 ivth.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
43ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐵 ∈ ℝ)
5 ivth.3 . . . . . 6 (𝜑𝑈 ∈ ℝ)
65ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑈 ∈ ℝ)
7 ivth.4 . . . . . 6 (𝜑𝐴 < 𝐵)
87ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐴 < 𝐵)
9 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
109ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → (𝐴[,]𝐵) ⊆ 𝐷)
11 ivth.7 . . . . . 6 (𝜑𝐹 ∈ (𝐷cn→ℂ))
1211ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝐹 ∈ (𝐷cn→ℂ))
13 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1413adantlr 477 . . . . . 6 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514adantlr 477 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . 6 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
1716ad2antrr 488 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
18 ivthinc.i . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
1918adantllr 481 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
2019adantllr 481 . . . . 5 (((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
21 ivthinclem.l . . . . 5 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
22 ivthinclem.r . . . . 5 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
23 simpr 110 . . . . 5 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → 𝑞𝐿)
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 13781 . . . 4 (((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞𝐿) → ∃𝑟𝐿 𝑞 < 𝑟)
2524ex 115 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 → ∃𝑟𝐿 𝑞 < 𝑟))
26 simpllr 534 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵))
27 fveq2 5511 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
2827eleq1d 2246 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑞) ∈ ℝ))
2913ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3029ad3antrrr 492 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3128, 30, 26rspcdva 2846 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) ∈ ℝ)
32 fveq2 5511 . . . . . . . 8 (𝑥 = 𝑟 → (𝐹𝑥) = (𝐹𝑟))
3332eleq1d 2246 . . . . . . 7 (𝑥 = 𝑟 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑟) ∈ ℝ))
34 fveq2 5511 . . . . . . . . . . 11 (𝑤 = 𝑟 → (𝐹𝑤) = (𝐹𝑟))
3534breq1d 4010 . . . . . . . . . 10 (𝑤 = 𝑟 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑟) < 𝑈))
3635, 21elrab2 2896 . . . . . . . . 9 (𝑟𝐿 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑟) < 𝑈))
3736simplbi 274 . . . . . . . 8 (𝑟𝐿𝑟 ∈ (𝐴[,]𝐵))
3837ad2antlr 489 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵))
3933, 30, 38rspcdva 2846 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) ∈ ℝ)
405ad3antrrr 492 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ)
41 simpr 110 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟)
42 breq2 4004 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 < 𝑦𝑞 < 𝑟))
43 fveq2 5511 . . . . . . . . . 10 (𝑦 = 𝑟 → (𝐹𝑦) = (𝐹𝑟))
4443breq2d 4012 . . . . . . . . 9 (𝑦 = 𝑟 → ((𝐹𝑞) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑟)))
4542, 44imbi12d 234 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)) ↔ (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟))))
46 breq1 4003 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 < 𝑦𝑞 < 𝑦))
4727breq1d 4010 . . . . . . . . . . 11 (𝑥 = 𝑞 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑞) < (𝐹𝑦)))
4846, 47imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
4948ralbidv 2477 . . . . . . . . 9 (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦))))
5018expr 375 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5150ralrimiva 2550 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5251ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5352ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
5449, 53, 26rspcdva 2846 . . . . . . . 8 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹𝑞) < (𝐹𝑦)))
5545, 54, 38rspcdva 2846 . . . . . . 7 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹𝑞) < (𝐹𝑟)))
5641, 55mpd 13 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < (𝐹𝑟))
5736simprbi 275 . . . . . . 7 (𝑟𝐿 → (𝐹𝑟) < 𝑈)
5857ad2antlr 489 . . . . . 6 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑟) < 𝑈)
5931, 39, 40, 56, 58lttrd 8073 . . . . 5 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → (𝐹𝑞) < 𝑈)
60 fveq2 5511 . . . . . . 7 (𝑤 = 𝑞 → (𝐹𝑤) = (𝐹𝑞))
6160breq1d 4010 . . . . . 6 (𝑤 = 𝑞 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑞) < 𝑈))
6261, 21elrab2 2896 . . . . 5 (𝑞𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑞) < 𝑈))
6326, 59, 62sylanbrc 417 . . . 4 ((((𝜑𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟𝐿) ∧ 𝑞 < 𝑟) → 𝑞𝐿)
6463rexlimdva2 2597 . . 3 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (∃𝑟𝐿 𝑞 < 𝑟𝑞𝐿))
6525, 64impbid 129 . 2 ((𝜑𝑞 ∈ (𝐴[,]𝐵)) → (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
6665ralrimiva 2550 1 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801   < clt 7982  [,]cicc 9878  cnccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-icc 9882  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  ivthinclemex  13787
  Copyright terms: Public domain W3C validator