Proof of Theorem ivthinclemlr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ivth.1 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 | 1 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐴 ∈ ℝ) | 
| 3 |   | ivth.2 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 4 | 3 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐵 ∈ ℝ) | 
| 5 |   | ivth.3 | 
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) | 
| 6 | 5 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝑈 ∈ ℝ) | 
| 7 |   | ivth.4 | 
. . . . . 6
⊢ (𝜑 → 𝐴 < 𝐵) | 
| 8 | 7 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐴 < 𝐵) | 
| 9 |   | ivth.5 | 
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | 
| 10 | 9 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → (𝐴[,]𝐵) ⊆ 𝐷) | 
| 11 |   | ivth.7 | 
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | 
| 12 | 11 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝐹 ∈ (𝐷–cn→ℂ)) | 
| 13 |   | ivth.8 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | 
| 14 | 13 | adantlr 477 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | 
| 15 | 14 | adantlr 477 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | 
| 16 |   | ivth.9 | 
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | 
| 17 | 16 | ad2antrr 488 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | 
| 18 |   | ivthinc.i | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | 
| 19 | 18 | adantllr 481 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | 
| 20 | 19 | adantllr 481 | 
. . . . 5
⊢
(((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | 
| 21 |   | ivthinclem.l | 
. . . . 5
⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | 
| 22 |   | ivthinclem.r | 
. . . . 5
⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | 
| 23 |   | simpr 110 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → 𝑞 ∈ 𝐿) | 
| 24 | 2, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23 | ivthinclemlopn 14872 | 
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑞 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) | 
| 25 | 24 | ex 115 | 
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (𝑞 ∈ 𝐿 → ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | 
| 26 |   | simpllr 534 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵)) | 
| 27 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝐹‘𝑥) = (𝐹‘𝑞)) | 
| 28 | 27 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑞) ∈ ℝ)) | 
| 29 | 13 | ralrimiva 2570 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) | 
| 30 | 29 | ad3antrrr 492 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) | 
| 31 | 28, 30, 26 | rspcdva 2873 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) ∈ ℝ) | 
| 32 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑥 = 𝑟 → (𝐹‘𝑥) = (𝐹‘𝑟)) | 
| 33 | 32 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 𝑟 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑟) ∈ ℝ)) | 
| 34 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑤 = 𝑟 → (𝐹‘𝑤) = (𝐹‘𝑟)) | 
| 35 | 34 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑤 = 𝑟 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑟) < 𝑈)) | 
| 36 | 35, 21 | elrab2 2923 | 
. . . . . . . . 9
⊢ (𝑟 ∈ 𝐿 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑟) < 𝑈)) | 
| 37 | 36 | simplbi 274 | 
. . . . . . . 8
⊢ (𝑟 ∈ 𝐿 → 𝑟 ∈ (𝐴[,]𝐵)) | 
| 38 | 37 | ad2antlr 489 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵)) | 
| 39 | 33, 30, 38 | rspcdva 2873 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑟) ∈ ℝ) | 
| 40 | 5 | ad3antrrr 492 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ) | 
| 41 |   | simpr 110 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟) | 
| 42 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → (𝑞 < 𝑦 ↔ 𝑞 < 𝑟)) | 
| 43 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑟 → (𝐹‘𝑦) = (𝐹‘𝑟)) | 
| 44 | 43 | breq2d 4045 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → ((𝐹‘𝑞) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑟))) | 
| 45 | 42, 44 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟)))) | 
| 46 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → (𝑥 < 𝑦 ↔ 𝑞 < 𝑦)) | 
| 47 | 27 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑦))) | 
| 48 | 46, 47 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) | 
| 49 | 48 | ralbidv 2497 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) | 
| 50 | 18 | expr 375 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 51 | 50 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 52 | 51 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 53 | 52 | ad3antrrr 492 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 54 | 49, 53, 26 | rspcdva 2873 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦))) | 
| 55 | 45, 54, 38 | rspcdva 2873 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟))) | 
| 56 | 41, 55 | mpd 13 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) < (𝐹‘𝑟)) | 
| 57 | 36 | simprbi 275 | 
. . . . . . 7
⊢ (𝑟 ∈ 𝐿 → (𝐹‘𝑟) < 𝑈) | 
| 58 | 57 | ad2antlr 489 | 
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑟) < 𝑈) | 
| 59 | 31, 39, 40, 56, 58 | lttrd 8152 | 
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) < 𝑈) | 
| 60 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑤 = 𝑞 → (𝐹‘𝑤) = (𝐹‘𝑞)) | 
| 61 | 60 | breq1d 4043 | 
. . . . . 6
⊢ (𝑤 = 𝑞 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑞) < 𝑈)) | 
| 62 | 61, 21 | elrab2 2923 | 
. . . . 5
⊢ (𝑞 ∈ 𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑞) < 𝑈)) | 
| 63 | 26, 59, 62 | sylanbrc 417 | 
. . . 4
⊢ ((((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) ∧ 𝑟 ∈ 𝐿) ∧ 𝑞 < 𝑟) → 𝑞 ∈ 𝐿) | 
| 64 | 63 | rexlimdva2 2617 | 
. . 3
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (∃𝑟 ∈ 𝐿 𝑞 < 𝑟 → 𝑞 ∈ 𝐿)) | 
| 65 | 25, 64 | impbid 129 | 
. 2
⊢ ((𝜑 ∧ 𝑞 ∈ (𝐴[,]𝐵)) → (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | 
| 66 | 65 | ralrimiva 2570 | 
1
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |