| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 | ⊢ (𝜑 → 𝜓) |
| mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| 4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2880 ovig 6074 prcdnql 7604 prcunqu 7605 p1le 8929 nnge1 9066 zltp1le 9434 gtndiv 9475 uzss 9676 addlelt 9897 xrre2 9950 xrre3 9951 zltaddlt1le 10136 zsupcllemstep 10379 modfzo0difsn 10547 seqf1oglem1 10671 leexp2r 10745 expnlbnd2 10817 facavg 10898 wrdred1hash 11044 caubnd2 11472 maxleast 11568 mulcn2 11667 cn1lem 11669 climsqz 11690 climsqz2 11691 climcvg1nlem 11704 fsumabs 11820 cvgratnnlemnexp 11879 cvgratnnlemmn 11880 bitsfzolem 12309 bitsfzo 12310 gcdzeq 12387 algcvgblem 12415 algcvga 12417 lcmdvdsb 12450 coprm 12510 pclemub 12654 bldisj 14917 xblm 14933 metss2lem 15013 bdxmet 15017 limccoap 15194 lgsne0 15559 gausslemma2dlem1a 15579 |
| Copyright terms: Public domain | W3C validator |