![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2844 ovig 5996 prcdnql 7483 prcunqu 7484 p1le 8806 nnge1 8942 zltp1le 9307 gtndiv 9348 uzss 9548 addlelt 9768 xrre2 9821 xrre3 9822 zltaddlt1le 10007 modfzo0difsn 10395 leexp2r 10574 expnlbnd2 10646 facavg 10726 caubnd2 11126 maxleast 11222 mulcn2 11320 cn1lem 11322 climsqz 11343 climsqz2 11344 climcvg1nlem 11357 fsumabs 11473 cvgratnnlemnexp 11532 cvgratnnlemmn 11533 zsupcllemstep 11946 gcdzeq 12023 algcvgblem 12049 algcvga 12051 lcmdvdsb 12084 coprm 12144 pclemub 12287 bldisj 13904 xblm 13920 metss2lem 14000 bdxmet 14004 limccoap 14150 lgsne0 14442 |
Copyright terms: Public domain | W3C validator |