| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 | ⊢ (𝜑 → 𝜓) |
| mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| 4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2870 ovig 6048 prcdnql 7570 prcunqu 7571 p1le 8895 nnge1 9032 zltp1le 9399 gtndiv 9440 uzss 9641 addlelt 9862 xrre2 9915 xrre3 9916 zltaddlt1le 10101 zsupcllemstep 10338 modfzo0difsn 10506 seqf1oglem1 10630 leexp2r 10704 expnlbnd2 10776 facavg 10857 wrdred1hash 10997 caubnd2 11301 maxleast 11397 mulcn2 11496 cn1lem 11498 climsqz 11519 climsqz2 11520 climcvg1nlem 11533 fsumabs 11649 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 bitsfzolem 12138 bitsfzo 12139 gcdzeq 12216 algcvgblem 12244 algcvga 12246 lcmdvdsb 12279 coprm 12339 pclemub 12483 bldisj 14723 xblm 14739 metss2lem 14819 bdxmet 14823 limccoap 15000 lgsne0 15365 gausslemma2dlem1a 15385 |
| Copyright terms: Public domain | W3C validator |