Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 267 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 426 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpani 428 mp2and 431 rspcimedv 2836 ovig 5974 prcdnql 7446 prcunqu 7447 p1le 8765 nnge1 8901 zltp1le 9266 gtndiv 9307 uzss 9507 addlelt 9725 xrre2 9778 xrre3 9779 zltaddlt1le 9964 modfzo0difsn 10351 leexp2r 10530 expnlbnd2 10601 facavg 10680 caubnd2 11081 maxleast 11177 mulcn2 11275 cn1lem 11277 climsqz 11298 climsqz2 11299 climcvg1nlem 11312 fsumabs 11428 cvgratnnlemnexp 11487 cvgratnnlemmn 11488 zsupcllemstep 11900 gcdzeq 11977 algcvgblem 12003 algcvga 12005 lcmdvdsb 12038 coprm 12098 pclemub 12241 bldisj 13195 xblm 13211 metss2lem 13291 bdxmet 13295 limccoap 13441 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |