Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 267 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 425 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpani 427 mp2and 430 rspcimedv 2832 ovig 5963 prcdnql 7425 prcunqu 7426 p1le 8744 nnge1 8880 zltp1le 9245 gtndiv 9286 uzss 9486 addlelt 9704 xrre2 9757 xrre3 9758 zltaddlt1le 9943 modfzo0difsn 10330 leexp2r 10509 expnlbnd2 10580 facavg 10659 caubnd2 11059 maxleast 11155 mulcn2 11253 cn1lem 11255 climsqz 11276 climsqz2 11277 climcvg1nlem 11290 fsumabs 11406 cvgratnnlemnexp 11465 cvgratnnlemmn 11466 zsupcllemstep 11878 gcdzeq 11955 algcvgblem 11981 algcvga 11983 lcmdvdsb 12016 coprm 12076 pclemub 12219 bldisj 13041 xblm 13057 metss2lem 13137 bdxmet 13141 limccoap 13287 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |