ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpand GIF version

Theorem mpand 429
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpand.1 (𝜑𝜓)
mpand.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpand (𝜑 → (𝜒𝜃))

Proof of Theorem mpand
StepHypRef Expression
1 mpand.1 . 2 (𝜑𝜓)
2 mpand.2 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
32ancomsd 269 . 2 (𝜑 → ((𝜒𝜓) → 𝜃))
41, 3mpan2d 428 1 (𝜑 → (𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mpani  430  mp2and  433  rspcimedv  2843  ovig  5995  prcdnql  7482  prcunqu  7483  p1le  8805  nnge1  8941  zltp1le  9306  gtndiv  9347  uzss  9547  addlelt  9767  xrre2  9820  xrre3  9821  zltaddlt1le  10006  modfzo0difsn  10394  leexp2r  10573  expnlbnd2  10645  facavg  10725  caubnd2  11125  maxleast  11221  mulcn2  11319  cn1lem  11321  climsqz  11342  climsqz2  11343  climcvg1nlem  11356  fsumabs  11472  cvgratnnlemnexp  11531  cvgratnnlemmn  11532  zsupcllemstep  11945  gcdzeq  12022  algcvgblem  12048  algcvga  12050  lcmdvdsb  12083  coprm  12143  pclemub  12286  bldisj  13837  xblm  13853  metss2lem  13933  bdxmet  13937  limccoap  14083  lgsne0  14375
  Copyright terms: Public domain W3C validator