![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 267 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 422 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpani 424 mp2and 427 rspcimedv 2762 ovig 5846 prcdnql 7237 prcunqu 7238 p1le 8514 nnge1 8650 zltp1le 9009 gtndiv 9047 uzss 9245 addlelt 9445 xrre2 9494 xrre3 9495 zltaddlt1le 9679 modfzo0difsn 10058 leexp2r 10237 expnlbnd2 10307 facavg 10382 caubnd2 10778 maxleast 10874 mulcn2 10970 cn1lem 10972 climsqz 10993 climsqz2 10994 climcvg1nlem 11007 fsumabs 11123 cvgratnnlemnexp 11182 cvgratnnlemmn 11183 zsupcllemstep 11483 gcdzeq 11553 algcvgblem 11573 algcvga 11575 lcmdvdsb 11608 coprm 11665 bldisj 12387 xblm 12403 metss2lem 12483 bdxmet 12487 |
Copyright terms: Public domain | W3C validator |