![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2867 ovig 6041 prcdnql 7546 prcunqu 7547 p1le 8870 nnge1 9007 zltp1le 9374 gtndiv 9415 uzss 9616 addlelt 9837 xrre2 9890 xrre3 9891 zltaddlt1le 10076 modfzo0difsn 10469 seqf1oglem1 10593 leexp2r 10667 expnlbnd2 10739 facavg 10820 wrdred1hash 10960 caubnd2 11264 maxleast 11360 mulcn2 11458 cn1lem 11460 climsqz 11481 climsqz2 11482 climcvg1nlem 11495 fsumabs 11611 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 zsupcllemstep 12085 gcdzeq 12162 algcvgblem 12190 algcvga 12192 lcmdvdsb 12225 coprm 12285 pclemub 12428 bldisj 14580 xblm 14596 metss2lem 14676 bdxmet 14680 limccoap 14857 lgsne0 15195 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |