| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 | ⊢ (𝜑 → 𝜓) |
| mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| 4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2909 ovig 6132 prcdnql 7679 prcunqu 7680 p1le 9004 nnge1 9141 zltp1le 9509 gtndiv 9550 uzss 9751 addlelt 9972 xrre2 10025 xrre3 10026 zltaddlt1le 10211 zsupcllemstep 10457 modfzo0difsn 10625 seqf1oglem1 10749 leexp2r 10823 expnlbnd2 10895 facavg 10976 wrdred1hash 11123 caubnd2 11636 maxleast 11732 mulcn2 11831 cn1lem 11833 climsqz 11854 climsqz2 11855 climcvg1nlem 11868 fsumabs 11984 cvgratnnlemnexp 12043 cvgratnnlemmn 12044 bitsfzolem 12473 bitsfzo 12474 gcdzeq 12551 algcvgblem 12579 algcvga 12581 lcmdvdsb 12614 coprm 12674 pclemub 12818 bldisj 15083 xblm 15099 metss2lem 15179 bdxmet 15183 limccoap 15360 lgsne0 15725 gausslemma2dlem1a 15745 |
| Copyright terms: Public domain | W3C validator |