| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 | ⊢ (𝜑 → 𝜓) |
| mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| 4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2870 ovig 6048 prcdnql 7568 prcunqu 7569 p1le 8893 nnge1 9030 zltp1le 9397 gtndiv 9438 uzss 9639 addlelt 9860 xrre2 9913 xrre3 9914 zltaddlt1le 10099 zsupcllemstep 10336 modfzo0difsn 10504 seqf1oglem1 10628 leexp2r 10702 expnlbnd2 10774 facavg 10855 wrdred1hash 10995 caubnd2 11299 maxleast 11395 mulcn2 11494 cn1lem 11496 climsqz 11517 climsqz2 11518 climcvg1nlem 11531 fsumabs 11647 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 bitsfzolem 12136 bitsfzo 12137 gcdzeq 12214 algcvgblem 12242 algcvga 12244 lcmdvdsb 12277 coprm 12337 pclemub 12481 bldisj 14721 xblm 14737 metss2lem 14817 bdxmet 14821 limccoap 14998 lgsne0 15363 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |