![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (𝜑 → 𝜓) |
mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2866 ovig 6040 prcdnql 7544 prcunqu 7545 p1le 8868 nnge1 9005 zltp1le 9371 gtndiv 9412 uzss 9613 addlelt 9834 xrre2 9887 xrre3 9888 zltaddlt1le 10073 modfzo0difsn 10466 seqf1oglem1 10590 leexp2r 10664 expnlbnd2 10736 facavg 10817 wrdred1hash 10957 caubnd2 11261 maxleast 11357 mulcn2 11455 cn1lem 11457 climsqz 11478 climsqz2 11479 climcvg1nlem 11492 fsumabs 11608 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 zsupcllemstep 12082 gcdzeq 12159 algcvgblem 12187 algcvga 12189 lcmdvdsb 12222 coprm 12282 pclemub 12425 bldisj 14569 xblm 14585 metss2lem 14665 bdxmet 14669 limccoap 14832 lgsne0 15154 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |