| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpand | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpand.1 | ⊢ (𝜑 → 𝜓) |
| mpand.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| mpand | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpand.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpand.2 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 2 | ancomsd 269 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| 4 | 1, 3 | mpan2d 428 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpani 430 mp2and 433 rspcimedv 2889 ovig 6097 prcdnql 7639 prcunqu 7640 p1le 8964 nnge1 9101 zltp1le 9469 gtndiv 9510 uzss 9711 addlelt 9932 xrre2 9985 xrre3 9986 zltaddlt1le 10171 zsupcllemstep 10416 modfzo0difsn 10584 seqf1oglem1 10708 leexp2r 10782 expnlbnd2 10854 facavg 10935 wrdred1hash 11081 caubnd2 11594 maxleast 11690 mulcn2 11789 cn1lem 11791 climsqz 11812 climsqz2 11813 climcvg1nlem 11826 fsumabs 11942 cvgratnnlemnexp 12001 cvgratnnlemmn 12002 bitsfzolem 12431 bitsfzo 12432 gcdzeq 12509 algcvgblem 12537 algcvga 12539 lcmdvdsb 12572 coprm 12632 pclemub 12776 bldisj 15040 xblm 15056 metss2lem 15136 bdxmet 15140 limccoap 15317 lgsne0 15682 gausslemma2dlem1a 15702 |
| Copyright terms: Public domain | W3C validator |