Step | Hyp | Ref
| Expression |
1 | | relres 4912 |
. . . 4
⊢ Rel ( I
↾ 𝐴) |
2 | | relin2 4723 |
. . . 4
⊢ (Rel ( I
↾ 𝐴) → Rel
(𝑅 ∩ ( I ↾ 𝐴))) |
3 | 1, 2 | mp1i 10 |
. . 3
⊢ (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴))) |
4 | | df-br 3983 |
. . . . 5
⊢ (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴))) |
5 | | brin 4034 |
. . . . 5
⊢ (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
6 | 4, 5 | bitr3i 185 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
7 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
8 | 7 | brres 4890 |
. . . . . . . 8
⊢ (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥 I 𝑦 ∧ 𝑥 ∈ 𝐴)) |
9 | | poirr 4285 |
. . . . . . . . . . 11
⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
10 | 7 | ideq 4756 |
. . . . . . . . . . . . 13
⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
11 | | breq2 3986 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
12 | 10, 11 | sylbi 120 |
. . . . . . . . . . . 12
⊢ (𝑥 I 𝑦 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
13 | 12 | notbid 657 |
. . . . . . . . . . 11
⊢ (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)) |
14 | 9, 13 | syl5ibcom 154 |
. . . . . . . . . 10
⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦)) |
15 | 14 | expimpd 361 |
. . . . . . . . 9
⊢ (𝑅 Po 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦)) |
16 | 15 | ancomsd 267 |
. . . . . . . 8
⊢ (𝑅 Po 𝐴 → ((𝑥 I 𝑦 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑦)) |
17 | 8, 16 | syl5bi 151 |
. . . . . . 7
⊢ (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦)) |
18 | 17 | con2d 614 |
. . . . . 6
⊢ (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦)) |
19 | | imnan 680 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
20 | 18, 19 | sylib 121 |
. . . . 5
⊢ (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
21 | 20 | pm2.21d 609 |
. . . 4
⊢ (𝑅 Po 𝐴 → ((𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦) → 〈𝑥, 𝑦〉 ∈ ∅)) |
22 | 6, 21 | syl5bi 151 |
. . 3
⊢ (𝑅 Po 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴)) → 〈𝑥, 𝑦〉 ∈ ∅)) |
23 | 3, 22 | relssdv 4696 |
. 2
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅) |
24 | | ss0 3449 |
. 2
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) |
25 | 23, 24 | syl 14 |
1
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) |