ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzdvds GIF version

Theorem odzdvds 12510
Description: The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))

Proof of Theorem odzdvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0z 9391 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
2 zq 9746 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
31, 2syl 14 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℚ)
43adantl 277 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℚ)
5 odzcl 12508 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ ℕ)
65adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ)
7 nnq 9753 . . . . . . . . 9 (((od𝑁)‘𝐴) ∈ ℕ → ((od𝑁)‘𝐴) ∈ ℚ)
86, 7syl 14 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℚ)
96nngt0d 9079 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 < ((od𝑁)‘𝐴))
10 modqlt 10476 . . . . . . . 8 ((𝐾 ∈ ℚ ∧ ((od𝑁)‘𝐴) ∈ ℚ ∧ 0 < ((od𝑁)‘𝐴)) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
114, 8, 9, 10syl3anc 1249 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
121adantl 277 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
1312, 6zmodcld 10488 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0)
1413nn0zd 9492 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℤ)
156nnzd 9493 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℤ)
16 zltnle 9417 . . . . . . . 8 (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℤ) → ((𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴) ↔ ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
1714, 15, 16syl2anc 411 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴) ↔ ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
1811, 17mpbid 147 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
19 1zzd 9398 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) → 1 ∈ ℤ)
20 nnuz 9683 . . . . . . . . . . 11 ℕ = (ℤ‘1)
2120rabeqi 2764 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} = {𝑛 ∈ (ℤ‘1) ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}
22 oveq2 5951 . . . . . . . . . . . . . . 15 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝐴𝑛) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
2322oveq1d 5958 . . . . . . . . . . . . . 14 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → ((𝐴𝑛) − 1) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))
2423breq2d 4055 . . . . . . . . . . . . 13 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
2524elrab 2928 . . . . . . . . . . . 12 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
2625biimpri 133 . . . . . . . . . . 11 (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
2726adantl 277 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
28 simp1 999 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
2928ad3antrrr 492 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → 𝑁 ∈ ℕ)
30 simp2 1000 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ)
3130ad3antrrr 492 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → 𝐴 ∈ ℤ)
32 elfznn 10175 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴))) → 𝑛 ∈ ℕ)
3332nnnn0d 9347 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴))) → 𝑛 ∈ ℕ0)
3433adantl 277 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → 𝑛 ∈ ℕ0)
35 zexpcl 10697 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℤ)
3631, 34, 35syl2anc 411 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → (𝐴𝑛) ∈ ℤ)
37 peano2zm 9409 . . . . . . . . . . . 12 ((𝐴𝑛) ∈ ℤ → ((𝐴𝑛) − 1) ∈ ℤ)
3836, 37syl 14 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → ((𝐴𝑛) − 1) ∈ ℤ)
39 dvdsdc 12051 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((𝐴𝑛) − 1) ∈ ℤ) → DECID 𝑁 ∥ ((𝐴𝑛) − 1))
4029, 38, 39syl2anc 411 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((od𝑁)‘𝐴)))) → DECID 𝑁 ∥ ((𝐴𝑛) − 1))
4119, 21, 27, 40infssuzledc 10375 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
4241ex 115 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
4342ancomsd 269 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
44 odzval 12506 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
4544adantr 276 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
4645breq1d 4053 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)) ↔ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
4743, 46sylibrd 169 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
4818, 47mtod 664 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
49 imnan 691 . . . . 5 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) ↔ ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
5048, 49sylibr 134 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
51 elnn0 9296 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0 ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
5213, 51sylib 122 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
5352ord 725 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
5450, 53syld 45 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
55 simpl1 1002 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℕ)
5655nnzd 9493 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
57 dvds0 12059 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
5856, 57syl 14 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ 0)
59 simpl2 1003 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
6059zcnd 9495 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
6160exp0d 10810 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑0) = 1)
6261oveq1d 5958 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = (1 − 1))
63 1m1e0 9104 . . . . . 6 (1 − 1) = 0
6462, 63eqtrdi 2253 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = 0)
6558, 64breqtrrd 4071 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑0) − 1))
66 oveq2 5951 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) = (𝐴↑0))
6766oveq1d 5958 . . . . 5 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) = ((𝐴↑0) − 1))
6867breq2d 4055 . . . 4 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ 𝑁 ∥ ((𝐴↑0) − 1)))
6965, 68syl5ibrcom 157 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
7054, 69impbid 129 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
716nnnn0d 9347 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ0)
72 znq 9744 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℕ) → (𝐾 / ((od𝑁)‘𝐴)) ∈ ℚ)
7312, 6, 72syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 / ((od𝑁)‘𝐴)) ∈ ℚ)
74 nn0ge0 9319 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
7574adantl 277 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
76 nn0re 9303 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
7776adantl 277 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
786nnred 9048 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ)
79 ge0div 8943 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ ∧ 0 < ((od𝑁)‘𝐴)) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
8077, 78, 9, 79syl3anc 1249 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
8175, 80mpbid 147 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ (𝐾 / ((od𝑁)‘𝐴)))
82 flqge0nn0 10434 . . . . . . . . . 10 (((𝐾 / ((od𝑁)‘𝐴)) ∈ ℚ ∧ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
8373, 81, 82syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
8471, 83nn0mulcld 9352 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0)
85 zexpcl 10697 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
8659, 84, 85syl2anc 411 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
87 zq 9746 . . . . . . 7 ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℚ)
8886, 87syl 14 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℚ)
89 1z 9397 . . . . . . 7 1 ∈ ℤ
90 zq 9746 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
9189, 90mp1i 10 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℚ)
92 zexpcl 10697 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
9359, 13, 92syl2anc 411 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
94 nnq 9753 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
9555, 94syl 14 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℚ)
9655nngt0d 9079 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 < 𝑁)
9760, 83, 71expmuld 10819 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) = ((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))))
9897oveq1d 5958 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
99 zexpcl 10697 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
10059, 71, 99syl2anc 411 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
101 1zzd 9398 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℤ)
102 odzid 12509 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
103102adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
104 moddvds 12052 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
10555, 100, 101, 104syl3anc 1249 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
106103, 105mpbird 167 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁))
107100, 101, 83, 95, 96, 106modqexp 10809 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
10873flqcld 10418 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ)
109 1exp 10711 . . . . . . . . 9 ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
110108, 109syl 14 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
111110oveq1d 5958 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = (1 mod 𝑁))
11298, 107, 1113eqtrd 2241 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁))
11388, 91, 93, 95, 96, 112modqmul1 10520 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
11460, 13, 84expaddd 10818 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))))
115 modqval 10467 . . . . . . . . . . 11 ((𝐾 ∈ ℚ ∧ ((od𝑁)‘𝐴) ∈ ℚ ∧ 0 < ((od𝑁)‘𝐴)) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
1164, 8, 9, 115syl3anc 1249 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
117116oveq2d 5959 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))))
11884nn0cnd 9349 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℂ)
11977recnd 8100 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
120118, 119pncan3d 8385 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))) = 𝐾)
121117, 120eqtrd 2237 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = 𝐾)
122121oveq2d 5959 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
123114, 122eqtr3d 2239 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
124123oveq1d 5958 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴𝐾) mod 𝑁))
12593zcnd 9495 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℂ)
126125mulid2d 8090 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
127126oveq1d 5958 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
128113, 124, 1273eqtr3d 2245 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
129128eqeq1d 2213 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁)))
130 zexpcl 10697 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
13159, 130sylancom 420 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
132 moddvds 12052 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐾) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
13355, 131, 101, 132syl3anc 1249 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
134 moddvds 12052 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
13555, 93, 101, 134syl3anc 1249 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
136129, 133, 1353bitr3d 218 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
137 dvdsval3 12044 . . 3 ((((od𝑁)‘𝐴) ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
1386, 12, 137syl2anc 411 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
13970, 136, 1383bitr4d 220 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wcel 2175  {crab 2487   class class class wbr 4043  cfv 5270  (class class class)co 5943  infcinf 7084  cr 7923  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929   < clt 8106  cle 8107  cmin 8242   / cdiv 8744  cn 9035  0cn0 9294  cz 9371  cuz 9647  cq 9739  ...cfz 10129  cfl 10409   mod cmo 10465  cexp 10681  cdvds 12040   gcd cgcd 12216  odcodz 12472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-proddc 11804  df-dvds 12041  df-gcd 12217  df-odz 12474  df-phi 12475
This theorem is referenced by:  odzphi  12511  pockthlem  12621
  Copyright terms: Public domain W3C validator