| Step | Hyp | Ref
 | Expression | 
| 1 |   | nn0z 9346 | 
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℤ) | 
| 2 |   | zq 9700 | 
. . . . . . . . . 10
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℚ) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℚ) | 
| 4 | 3 | adantl 277 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℚ) | 
| 5 |   | odzcl 12412 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) ∈ ℕ) | 
| 6 | 5 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) ∈ ℕ) | 
| 7 |   | nnq 9707 | 
. . . . . . . . 9
⊢
(((odℤ‘𝑁)‘𝐴) ∈ ℕ →
((odℤ‘𝑁)‘𝐴) ∈ ℚ) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) ∈ ℚ) | 
| 9 | 6 | nngt0d 9034 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 <
((odℤ‘𝑁)‘𝐴)) | 
| 10 |   | modqlt 10425 | 
. . . . . . . 8
⊢ ((𝐾 ∈ ℚ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℚ ∧ 0 <
((odℤ‘𝑁)‘𝐴)) → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) < ((odℤ‘𝑁)‘𝐴)) | 
| 11 | 4, 8, 9, 10 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod
((odℤ‘𝑁)‘𝐴)) < ((odℤ‘𝑁)‘𝐴)) | 
| 12 | 1 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℤ) | 
| 13 | 12, 6 | zmodcld 10437 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈
ℕ0) | 
| 14 | 13 | nn0zd 9446 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℤ) | 
| 15 | 6 | nnzd 9447 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) ∈ ℤ) | 
| 16 |   | zltnle 9372 | 
. . . . . . . 8
⊢ (((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℤ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℤ) → ((𝐾 mod ((odℤ‘𝑁)‘𝐴)) < ((odℤ‘𝑁)‘𝐴) ↔ ¬
((odℤ‘𝑁)‘𝐴) ≤ (𝐾 mod ((odℤ‘𝑁)‘𝐴)))) | 
| 17 | 14, 15, 16 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) < ((odℤ‘𝑁)‘𝐴) ↔ ¬
((odℤ‘𝑁)‘𝐴) ≤ (𝐾 mod ((odℤ‘𝑁)‘𝐴)))) | 
| 18 | 11, 17 | mpbid 147 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬
((odℤ‘𝑁)‘𝐴) ≤ (𝐾 mod ((odℤ‘𝑁)‘𝐴))) | 
| 19 |   | 1zzd 9353 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) → 1 ∈
ℤ) | 
| 20 |   | nnuz 9637 | 
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) | 
| 21 | 20 | rabeqi 2756 | 
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} = {𝑛 ∈ (ℤ≥‘1)
∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} | 
| 22 |   | oveq2 5930 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝐾 mod ((odℤ‘𝑁)‘𝐴)) → (𝐴↑𝑛) = (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) | 
| 23 | 22 | oveq1d 5937 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝐾 mod ((odℤ‘𝑁)‘𝐴)) → ((𝐴↑𝑛) − 1) = ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1)) | 
| 24 | 23 | breq2d 4045 | 
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝐾 mod ((odℤ‘𝑁)‘𝐴)) → (𝑁 ∥ ((𝐴↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 25 | 24 | elrab 2920 | 
. . . . . . . . . . . 12
⊢ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)} ↔ ((𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 26 | 25 | biimpri 133 | 
. . . . . . . . . . 11
⊢ (((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1)) → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) | 
| 27 | 26 | adantl 277 | 
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) | 
| 28 |   | simp1 999 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ) | 
| 29 | 28 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → 𝑁 ∈ ℕ) | 
| 30 |   | simp2 1000 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ) | 
| 31 | 30 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → 𝐴 ∈ ℤ) | 
| 32 |   | elfznn 10129 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴))) → 𝑛 ∈ ℕ) | 
| 33 | 32 | nnnn0d 9302 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴))) → 𝑛 ∈ ℕ0) | 
| 34 | 33 | adantl 277 | 
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → 𝑛 ∈ ℕ0) | 
| 35 |   | zexpcl 10646 | 
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℕ0)
→ (𝐴↑𝑛) ∈
ℤ) | 
| 36 | 31, 34, 35 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → (𝐴↑𝑛) ∈ ℤ) | 
| 37 |   | peano2zm 9364 | 
. . . . . . . . . . . 12
⊢ ((𝐴↑𝑛) ∈ ℤ → ((𝐴↑𝑛) − 1) ∈ ℤ) | 
| 38 | 36, 37 | syl 14 | 
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → ((𝐴↑𝑛) − 1) ∈ ℤ) | 
| 39 |   | dvdsdc 11963 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴↑𝑛) − 1) ∈ ℤ) →
DECID 𝑁
∥ ((𝐴↑𝑛) − 1)) | 
| 40 | 29, 38, 39 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝐴 ∈
ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) ∧ 𝑛 ∈ (1...(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) → DECID 𝑁 ∥ ((𝐴↑𝑛) − 1)) | 
| 41 | 19, 21, 27, 40 | infssuzledc 10324 | 
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod
((odℤ‘𝑁)‘𝐴))) | 
| 42 | 41 | ex 115 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1)) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod
((odℤ‘𝑁)‘𝐴)))) | 
| 43 | 42 | ancomsd 269 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ ℕ) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod
((odℤ‘𝑁)‘𝐴)))) | 
| 44 |   | odzval 12410 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 45 | 44 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 46 | 45 | breq1d 4043 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(((odℤ‘𝑁)‘𝐴) ≤ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ↔ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod
((odℤ‘𝑁)‘𝐴)))) | 
| 47 | 43, 46 | sylibrd 169 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ ℕ) →
((odℤ‘𝑁)‘𝐴) ≤ (𝐾 mod ((odℤ‘𝑁)‘𝐴)))) | 
| 48 | 18, 47 | mtod 664 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬
(𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ ℕ)) | 
| 49 |   | imnan 691 | 
. . . . 5
⊢ ((𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ) ↔ ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) ∈ ℕ)) | 
| 50 | 48, 49 | sylibr 134 | 
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ)) | 
| 51 |   | elnn0 9251 | 
. . . . . 6
⊢ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ0 ↔ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 52 | 13, 51 | sylib 122 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 53 | 52 | ord 725 | 
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (¬
(𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 54 | 50, 53 | syld 45 | 
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 55 |   | simpl1 1002 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
ℕ) | 
| 56 | 55 | nnzd 9447 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
ℤ) | 
| 57 |   | dvds0 11971 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | 
| 58 | 56, 57 | syl 14 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ 0) | 
| 59 |   | simpl2 1003 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈
ℤ) | 
| 60 | 59 | zcnd 9449 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈
ℂ) | 
| 61 | 60 | exp0d 10759 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑0) = 1) | 
| 62 | 61 | oveq1d 5937 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = (1 −
1)) | 
| 63 |   | 1m1e0 9059 | 
. . . . . 6
⊢ (1
− 1) = 0 | 
| 64 | 62, 63 | eqtrdi 2245 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) =
0) | 
| 65 | 58, 64 | breqtrrd 4061 | 
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑0) − 1)) | 
| 66 |   | oveq2 5930 | 
. . . . . 6
⊢ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) = 0 → (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) = (𝐴↑0)) | 
| 67 | 66 | oveq1d 5937 | 
. . . . 5
⊢ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) = 0 → ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) = ((𝐴↑0) − 1)) | 
| 68 | 67 | breq2d 4045 | 
. . . 4
⊢ ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) = 0 → (𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ↔ 𝑁 ∥ ((𝐴↑0) − 1))) | 
| 69 | 65, 68 | syl5ibrcom 157 | 
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod
((odℤ‘𝑁)‘𝐴)) = 0 → 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 70 | 54, 69 | impbid 129 | 
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1) ↔ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 71 | 6 | nnnn0d 9302 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) ∈
ℕ0) | 
| 72 |   | znq 9698 | 
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℕ) → (𝐾 / ((odℤ‘𝑁)‘𝐴)) ∈ ℚ) | 
| 73 | 12, 6, 72 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 /
((odℤ‘𝑁)‘𝐴)) ∈ ℚ) | 
| 74 |   | nn0ge0 9274 | 
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ0
→ 0 ≤ 𝐾) | 
| 75 | 74 | adantl 277 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤
𝐾) | 
| 76 |   | nn0re 9258 | 
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℝ) | 
| 77 | 76 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℝ) | 
| 78 | 6 | nnred 9003 | 
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((odℤ‘𝑁)‘𝐴) ∈ ℝ) | 
| 79 |   | ge0div 8898 | 
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℝ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℝ ∧ 0 <
((odℤ‘𝑁)‘𝐴)) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((odℤ‘𝑁)‘𝐴)))) | 
| 80 | 77, 78, 9, 79 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (0 ≤
𝐾 ↔ 0 ≤ (𝐾 /
((odℤ‘𝑁)‘𝐴)))) | 
| 81 | 75, 80 | mpbid 147 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤
(𝐾 /
((odℤ‘𝑁)‘𝐴))) | 
| 82 |   | flqge0nn0 10383 | 
. . . . . . . . . 10
⊢ (((𝐾 /
((odℤ‘𝑁)‘𝐴)) ∈ ℚ ∧ 0 ≤ (𝐾 /
((odℤ‘𝑁)‘𝐴))) → (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))) ∈
ℕ0) | 
| 83 | 73, 81, 82 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴))) ∈
ℕ0) | 
| 84 | 71, 83 | nn0mulcld 9307 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) ∈
ℕ0) | 
| 85 |   | zexpcl 10646 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧
(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) ∈ ℕ0) →
(𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) ∈ ℤ) | 
| 86 | 59, 84, 85 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) ∈ ℤ) | 
| 87 |   | zq 9700 | 
. . . . . . 7
⊢ ((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) ∈ ℤ → (𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) ∈ ℚ) | 
| 88 | 86, 87 | syl 14 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) ∈ ℚ) | 
| 89 |   | 1z 9352 | 
. . . . . . 7
⊢ 1 ∈
ℤ | 
| 90 |   | zq 9700 | 
. . . . . . 7
⊢ (1 ∈
ℤ → 1 ∈ ℚ) | 
| 91 | 89, 90 | mp1i 10 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈
ℚ) | 
| 92 |   | zexpcl 10646 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ (𝐾 mod
((odℤ‘𝑁)‘𝐴)) ∈ ℕ0) → (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) ∈ ℤ) | 
| 93 | 59, 13, 92 | syl2anc 411 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) ∈ ℤ) | 
| 94 |   | nnq 9707 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) | 
| 95 | 55, 94 | syl 14 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈
ℚ) | 
| 96 | 55 | nngt0d 9034 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 <
𝑁) | 
| 97 | 60, 83, 71 | expmuld 10768 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) = ((𝐴↑((odℤ‘𝑁)‘𝐴))↑(⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) | 
| 98 | 97 | oveq1d 5937 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) mod 𝑁) = (((𝐴↑((odℤ‘𝑁)‘𝐴))↑(⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) mod 𝑁)) | 
| 99 |   | zexpcl 10646 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℕ0) → (𝐴↑((odℤ‘𝑁)‘𝐴)) ∈ ℤ) | 
| 100 | 59, 71, 99 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((odℤ‘𝑁)‘𝐴)) ∈ ℤ) | 
| 101 |   | 1zzd 9353 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈
ℤ) | 
| 102 |   | odzid 12413 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) | 
| 103 | 102 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) | 
| 104 |   | moddvds 11964 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑((odℤ‘𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ)
→ (((𝐴↑((odℤ‘𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) | 
| 105 | 55, 100, 101, 104 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((odℤ‘𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) | 
| 106 | 103, 105 | mpbird 167 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑((odℤ‘𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁)) | 
| 107 | 100, 101,
83, 95, 96, 106 | modqexp 10758 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((odℤ‘𝑁)‘𝐴))↑(⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴)))) mod 𝑁)) | 
| 108 | 73 | flqcld 10367 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴))) ∈ ℤ) | 
| 109 |   | 1exp 10660 | 
. . . . . . . . 9
⊢
((⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴))) ∈ ℤ →
(1↑(⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴)))) = 1) | 
| 110 | 108, 109 | syl 14 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(1↑(⌊‘(𝐾 /
((odℤ‘𝑁)‘𝐴)))) = 1) | 
| 111 | 110 | oveq1d 5937 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((1↑(⌊‘(𝐾
/ ((odℤ‘𝑁)‘𝐴)))) mod 𝑁) = (1 mod 𝑁)) | 
| 112 | 98, 107, 111 | 3eqtrd 2233 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁)) | 
| 113 | 88, 91, 93, 95, 96, 112 | modqmul1 10469 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) mod 𝑁)) | 
| 114 | 60, 13, 84 | expaddd 10767 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 mod ((odℤ‘𝑁)‘𝐴)))) = ((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))))) | 
| 115 |   | modqval 10416 | 
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℚ ∧
((odℤ‘𝑁)‘𝐴) ∈ ℚ ∧ 0 <
((odℤ‘𝑁)‘𝐴)) → (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = (𝐾 − (((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))))) | 
| 116 | 4, 8, 9, 115 | syl3anc 1249 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod
((odℤ‘𝑁)‘𝐴)) = (𝐾 − (((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))))) | 
| 117 | 116 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 mod ((odℤ‘𝑁)‘𝐴))) = ((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 − (((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))))) | 
| 118 | 84 | nn0cnd 9304 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) ∈ ℂ) | 
| 119 | 77 | recnd 8055 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈
ℂ) | 
| 120 | 118, 119 | pncan3d 8340 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 − (((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))))) = 𝐾) | 
| 121 | 117, 120 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 mod ((odℤ‘𝑁)‘𝐴))) = 𝐾) | 
| 122 | 121 | oveq2d 5938 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴)))) + (𝐾 mod ((odℤ‘𝑁)‘𝐴)))) = (𝐴↑𝐾)) | 
| 123 | 114, 122 | eqtr3d 2231 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) = (𝐴↑𝐾)) | 
| 124 | 123 | oveq1d 5937 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((odℤ‘𝑁)‘𝐴) · (⌊‘(𝐾 / ((odℤ‘𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑𝐾) mod 𝑁)) | 
| 125 | 93 | zcnd 9449 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) ∈ ℂ) | 
| 126 | 125 | mulid2d 8045 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1
· (𝐴↑(𝐾 mod
((odℤ‘𝑁)‘𝐴)))) = (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴)))) | 
| 127 | 126 | oveq1d 5937 | 
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1
· (𝐴↑(𝐾 mod
((odℤ‘𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) mod 𝑁)) | 
| 128 | 113, 124,
127 | 3eqtr3d 2237 | 
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) mod 𝑁) = ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) mod 𝑁)) | 
| 129 | 128 | eqeq1d 2205 | 
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑𝐾) mod 𝑁) = (1 mod 𝑁) ↔ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁))) | 
| 130 |   | zexpcl 10646 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℕ0)
→ (𝐴↑𝐾) ∈
ℤ) | 
| 131 | 59, 130 | sylancom 420 | 
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑𝐾) ∈ ℤ) | 
| 132 |   | moddvds 11964 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑𝐾) ∈ ℤ ∧ 1 ∈ ℤ)
→ (((𝐴↑𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑𝐾) − 1))) | 
| 133 | 55, 131, 101, 132 | syl3anc 1249 | 
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑𝐾) − 1))) | 
| 134 |   | moddvds 11964 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) ∈ ℤ ∧ 1 ∈ ℤ)
→ (((𝐴↑(𝐾 mod
((odℤ‘𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 135 | 55, 93, 101, 134 | syl3anc 1249 | 
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 136 | 129, 133,
135 | 3bitr3d 218 | 
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((odℤ‘𝑁)‘𝐴))) − 1))) | 
| 137 |   | dvdsval3 11956 | 
. . 3
⊢
((((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝐾 ∈ ℤ) →
(((odℤ‘𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 138 | 6, 12, 137 | syl2anc 411 | 
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) →
(((odℤ‘𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((odℤ‘𝑁)‘𝐴)) = 0)) | 
| 139 | 70, 136, 138 | 3bitr4d 220 | 
1
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔
((odℤ‘𝑁)‘𝐴) ∥ 𝐾)) |