Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralxfrd | GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
ralxfrd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
ralxfrd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfrd.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralxfrd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfrd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | ralxfrd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rspcdv 2842 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
5 | 4 | ralrimdva 2555 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐶 𝜒)) |
6 | ralxfrd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
7 | r19.29 2612 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴)) | |
8 | 2 | biimprd 158 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
9 | 8 | expimpd 363 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜒) → 𝜓)) |
10 | 9 | ancomsd 269 | . . . . . . 7 ⊢ (𝜑 → ((𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
11 | 10 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → ((𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
12 | 11 | rexlimdva 2592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
13 | 7, 12 | syl5 32 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → 𝜓)) |
14 | 6, 13 | mpan2d 428 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐶 𝜒 → 𝜓)) |
15 | 14 | ralrimdva 2555 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐶 𝜒 → ∀𝑥 ∈ 𝐵 𝜓)) |
16 | 5, 15 | impbid 129 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 |
This theorem is referenced by: ralxfr2d 4458 ralxfr 4460 |
Copyright terms: Public domain | W3C validator |